

# CKVISION SDK 使用说明

Ver. 5.3.0.1

www.ckvision.net



# **CKVision SDK**

1

| Bin |                                        |
|-----|----------------------------------------|
| 1.1 | DLL 库文件8                               |
|     | CKBase.dll 基础库8                        |
|     | CKBlob.dll 斑点分析                        |
|     | CKCalibration.dll 标定与校准8               |
|     | CKColor.dll 颜色识别8                      |
|     | CKContour.dll 轮廓提取8                    |
|     | CKGDI.dll 图形显示                         |
|     | CKLocate.dll 形状匹配(识别定位)8               |
|     | CKMeasure.dll 测量(点、线、圆)8               |
|     | CKReader.dll 条码识别(一维码、二维码)8            |
| 1.2 | 功能实例 exe 执行文件9                         |
|     | BarcodeDemo.exe 一维码检测9                 |
|     | BlobToolDemo.exe 斑点分析11                |
|     | CalibrationDemo.exe 标定校准12             |
|     | CaliperDemo.exe 卡尺测量、间距检测15            |
|     | ColorMatchDemo.exe 色彩匹配17              |
|     | ColorThresholdDemo.exe 彩色二值化18         |
|     | ContourDemo.exe 轮廓提取20                 |
|     | DataMatrixDemo.exe 二维码读取(DM 码)21       |
|     | EdgeToolDemo.exe 边缘点检测                 |
|     | FitCircleDemo.exe 圆形测量(拟合圆)23          |
|     | FitLineDemo.exe 直线测量(拟合直线)24           |
|     | HistogramDemo.exe 灰度直方图、亮度检测、自动二值化阈值26 |
|     | ImageDemo.exe 图像预处理27                  |

2 / 138



| ImageWarpDemo.exe 环形展开裁剪图像28                             |
|----------------------------------------------------------|
| ImgTransDemo.exe 图形变换(镜像、平移、旋转、缩放、仿射)29                  |
| InspectDemo.exe 图像对比缺陷检测33                               |
| <b>ModelDemo.exe</b> 模板轮廓匹配定位(老版本)                       |
| MultiModelDemo.exe 多轮廓匹配定位(新版本)                          |
| NCMatchDemo.exe 灰度匹配定位42                                 |
| QRCodeDemo.exe 二维码检测(QR 码)44                             |
| ReadOcrDemo.exe 字符读取45                                   |
| SearchDemo.exe 模板轮廓匹配定位(新版本)49                           |
| 2 Bin_x64                                                |
| 2.1 等同 Bin 文件内功能。52                                      |
| 3 Document 文档                                            |
| CKVision.chm53                                           |
| CKVision 简介.pdf53                                        |
| 版本说明.doc53                                               |
| CKVISION SDK 说明53                                        |
| 4 Include 开发库头文件                                         |
| CKAcmeTool.h 顶点测量 (CAcmeTool) CKMeasure.dll54            |
| CKBarcode.h 一维码读取 (CReadBarcode) CKReader.dll54          |
| CKBase.h 基础模块 CKBase.dll54                               |
| CKBaseDef.h 导出/导入、数据结构定义54                               |
| CKBlob.h 斑点分析、图像对比 CKBlob.dll54                          |
| CKBlobAnalyzer.h 斑点分析 (CBlobAnalyze)54                   |
| CKBlobData.h Blob 数据 (CBlobData )54                      |
| CKBlobDef.h Blob 定义54                                    |
| CKCalibration.h 标定功能 (CCalibration ) CKCalibration.dll54 |



| CKCaliper.h 卡尺    | 、间距测量 (CCaliper )   CKMeasure.dll          | 54 |
|-------------------|--------------------------------------------|----|
| CKCharset.h       | 字符集 (CCharset) CKReader.dll                | 54 |
| CKColor.h 颜色      | CKColor.dll                                | 54 |
| CKColorIdentify.h | 颜色颜色识别 (CColorSamples 、CColorIdentify)     | 54 |
| CKColorMonitor.h  | 颜色监测 (CColorMonitor )                      | 54 |
| CKColorSample.h   | 颜色样本 (CColorSample)                        | 54 |
| CKContour.h       | 轮廓检测、轮廓缺陷 CKContour.dll                    | 54 |
| CKContourDefect.  | h 轮廓缺陷 (CContourDefect)                    | 54 |
| CKContourDetect.  | h   轮廓检测   ( CContourDetect )              | 54 |
| CKDataMatrix.h    | 读取 DataMatrix 二维码(CDataMatrix)CKReader.dll | 54 |
| CKDotMatrix.h     | 圆形矩阵标定板 (CDotMatrix)                       | 54 |
| CKEdgeTool.h      | 边缘点检测 (CEdgeTool ) CKMeasure.dll           | 54 |
| CKFileStore.h     | 文件存储结构 (CFileStore) CKBase.dll             | 54 |
| CKFindBarcode.h   | 读取一维码 (CFindBarcode) CKReader.dll          | 54 |
| CKFindModel.h     | 形状模型搜索 (CFindModel) CKLocate.dll           | 54 |
| CKFitCircle.h     | 圆拟合工具 (CFitCircle) CKMeasure.dll           | 54 |
| CKFitLine.h 线抄    | 合工具 (CFitLine)                             | 54 |
| CKFrameTrans.h    | 坐标系变换 (CFrameTrans)CKBase.dll              | 54 |
| CKGDI.h 图形        | 显示 CKGDI.dll                               | 55 |
| CKGdiBoxScan.h    | 旋转矩形框内扫描线 (CGdiBoxScan)                    | 55 |
| CKGdiCircle.h     | 圆形 (CGdiCircle )                           | 55 |
| CKGdiContour.h    | 轮廓图形 (CGdiContour)                         | 55 |
| CKGdiEllipse.h    | 椭圆图形 (CGdiEllipse)                         | 55 |
| CKGdiFigure.h     | 图形功能(基类) (CGdiFigure)                      | 55 |
| CKGdiFrame.h      | 坐标系显示 (CGdiFrame)                          | 55 |
| CKGdiHistogram.h  | 直方图 (CGdiHistogram)                        | 55 |



| CKGdiLine.h      | 线段图形 (CGdiLine)                      | 55   |
|------------------|--------------------------------------|------|
| CKGdiMask.h      | 掩摸显示 (CGdiMask)                      | 55   |
| CKGdiModel.h     | 模型轮廓显示 (CGdiModel)                   | 55   |
| CKGdiPoint.h     | 点、十字显示 (CGdiPoint)                   | 55   |
| CKGdiPolygon.h   | 多边形图形 (CGdiPolygon)                  | 55   |
| CKGdiProfile.h   | 投影曲线边缘位置(CGdiProfile)                | 55   |
| CKGdiRect.h      | 矩形框 (CGdiRect)                       | 55   |
| CKGdiRing.h      | 圆环图形 (CGdiRing)                      | . 55 |
| CKGdiRingScan.h  | 圆环内扫描线 (CGdiRingScan)                | 55   |
| CKGdiRotBox.h    | 旋转矩形 (CGdiRotBox)                    | 55   |
| CKGdiText.h      | 文本显示 (CGdiText )                     | 55   |
| CKGdiType.h      | 模板类显示 (CGdiType)                     | 55   |
| CKGdiView.h      | 图形视图窗口 (CGdiView) CKGDI.dll          | 55   |
| CKGeoMeas.h      | 基本几何测量 (CKVISION_API)CKBase.dll      | 55   |
| CKHasp.h 校验      | 金锁                                   | 55   |
| CKHistogram.h    | 直方图、分割阈值 (CHistogram)                | 55   |
| CKHSIThreshold.h | HSI 颜色抽取 (CHSIThreshold) CKColor.dll | 55   |
| CKImage.h 图值     | 象基本功能 (CPrImage) CKBase.dll          | . 56 |
| CKImgConve.h     | 图像转换、高级调整(CKVISION_API)CKBase.dll    | 56   |
| CKImgFilter.h    | 图像滤波                                 | 56   |
| CKImgMorph.h     | 图像灰度形态学                              | 56   |
| CKImgOpera.h     | 图像算术和逻辑                              | 56   |
| CKImgTrans.h     | 图像变换(镜像、平移、旋转、缩放、等)                  | 56   |
| CKLocate.h 形状    | 代匹配、识别定位 CKLocate.dll                | 56   |
| CKMask.h 图值      | 象掩摸 (CMask) CKBase.dll               | 56   |
| CKMeasDef.h      | 测量定义 CKMeasure.dll                   | 56   |



|           | CKMeasure.h    | 测量           | L<br>L       | CKMeasure.   | dll            |               | 56        |
|-----------|----------------|--------------|--------------|--------------|----------------|---------------|-----------|
|           | CKModel.h 천    | 莫型特征         | E点模板         | ( CModel )   | CKLocate.dll   |               | 56        |
|           | CKModelConto   | our.h 模      | 型轮廓          | ( CModelCo   | ontour )       |               | 56        |
|           | CKNCMatch.h    | 灰度           | 区域匹配         | ( CNCMat     | ch )           |               | 56        |
|           | CKNCPat.h 力    | 灰度模板         | ά (CNC       | CPat )       |                |               | 56        |
|           | CKOverlay.h    | 覆盖           | 图功能          | ( COverlay   | ) CKGDI.dll.   |               | 56        |
|           | CKPatInspect.h | □ 基于         | 图像对比         | 缺陷检测(0       | PatInspect )   | CKBlob.dll    | 56        |
|           | CKPixelStat.h  | 像素           | 统计功能         | ( CPixelSt   | at) CKBase.    | dll           | 56        |
|           | CKPointVector  | .h           | 坐标点容         | 器 (CPoi      | ntVector ) CKI | Measure.dll   | 56        |
|           | CKProfile.h    | 图像截面         | 面投影曲线        | (CProfile)   | CKMeasure      | .dll          | 56        |
|           | CKReadDXF.h    | 读取           | ス DXF 文件     | 生成模板轮风       | 郭 (CReadDX     | F ) CKGDI.dll | 56        |
|           | CKReader.h रे  | 卖取条码         | <b>ふ</b> 、字符 | CKRead       | der.dll        |               | 56        |
|           | CKReadOcr.h    | 字符           | F识别          | ( CReadOcr ) | CKReader.d     | II            | 56        |
|           | CKReadQRCod    | e.h          | 读取 QR 和      | 马 (CRead     | dQRCode )      |               | 56        |
|           | CKScanEdge.h   | 扫描           | 茚边缘          | (CScanEdge)  | CKMeasure      | e.dll         | 56        |
|           | CKScanSpace.h  | 1 扫描         | 间距           | (CScanSpace  | )              |               | 56        |
|           | CKShapeMatch   | ı.h          | 边缘轮廓         | 形状匹配(新)      | ( CShapeM      | atch ) CKLoca | ate.dll56 |
|           | CKShapeMode    | l.h          | 形状模板         | (新) (CSh     | apeModel ) C   | KLocate.dll   | 56        |
|           | CKSharpAssess  | .h           | 图像清晰         | 度评估 (C       | SharpAssess )  | CKBase.dll    | 56        |
| 5 Install | 运行库安装包.        | •••••        |              |              |                |               | 57        |
| 6 Lib 开发  | 支库 Lib 文件      | •••••        |              |              |                |               | 57        |
| 7 Lib_x64 | 开发库 64 位       | 版本文          | 件            |              |                |               | 57        |
| 8 Sample  | s 功能 API 调月    | 目实例          |              |              |                |               | 58        |
|           | BarcodeDemo    | 一维码          | 检测           |              |                |               | 66        |
|           | BlobToolDemo   | <b>)</b> 斑点分 | ♪析           |              |                |               | 71        |
|           | CalibrationDer | no 标定        | 校准           |              |                |               | 77        |



| CaliperDemo 卡尺测量、间距检测81              |
|--------------------------------------|
| ColorMatchDemo 色彩匹配85                |
| ColorThresholdDemo 彩色二值化87           |
| ContourDemo 轮廓提取89                   |
| DataMatrixDemo 二维码读取(DM 码)           |
| <b>EdgeToolDemo</b> 边缘点检测96          |
| FitCircleDemo 圆形测量(拟合圆)98            |
| <b>FitLineDemo</b> 直线测量(拟合直线)        |
| HistogramDemo 灰度直方图、自动二值化阈值          |
| ImageDemo 图像预处理108                   |
| ImageWarpDemo 环形展开裁剪图像109            |
| ImgTransDemo 图形变换(镜像、平移、旋转、缩放、仿射)111 |
| <b>InspectDemo</b> 基于图像对比缺陷检测113     |
| <b>ModelDemo</b> 模板轮廓匹配定位(老版本)117    |
| <b>MultiModelDemo</b> 多轮廓匹配定位(新版本)   |
| NCMatchDemo 灰度匹配定位121                |
| <b>QRCodeDemo</b> 二维码检测(QR 码)        |
| ReadOcrDemo 字符读取127                  |
| <b>SearchDemo</b> 模板轮廓匹配定位(新版本)      |
| 9 附 1. CKVISION API 功能分类             |



## 1 Bin

# 1.1 DLL 库文件

CKBase.dll 基础库 CKBlob.dll 斑点分析 CKCalibration.dll 标定与校准 CKColor.dll 颜色识别 CKContour.dll 轮廓提取 CKGDI.dll 图形显示 CKLocate.dll 形状匹配(识别定位) CKMeasure.dll 测量(点、线、圆) CKReader.dll 条码识别(一维码、二维码)



### 1.2 功能实例 exe 执行文件

#### BarcodeDemo.exe 一维码检测

| III BarcodeDemo                                                                        | ×<br>操作<br>打开图像                                                                                  |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 5的开发者,<br>氮结构的Intel® C4-FFM Guess<br>成程级并行。<br>图书分类:计算机>程序设计<br>ISBN 978-7-121-04005-4 | 1001<br>检测<br>参数<br>读取条码类<br>UFC A<br>UFC A<br>UFC A<br>EAN 13<br>CODE_39<br>CODE_93<br>CODE_128 |
| 2<br>定价: 59.00元<br>数据<br>定位梯度 20 最大条宽度 25 ☑ 水平 □ 垂直 □ 45度 □ 135度                       | INTERLEAVED_2_5<br>滤波器半宽 1 ÷<br>梯度阈值 20 ÷                                                        |
| 9787121040054                                                                          | 消耗时间: 16.393 ms                                                                                  |

打开图像:打开一张 8 位 bmp 的灰度图像。

ROI: 检测区域,指定区域内进行检测,可减少处理的时间。

检测: 自动定位识别条码所在的位置并读取出条码的值。

条码类型:选择当前需要读取的条码类型,可以同时选择多个(自动识别类型)。

**滤波器半宽:**用于增强边缘提取功能,去除图像上的噪音干扰;最小值为1,当边缘模 糊不清晰或有噪音干扰时可以增大滤波半宽值,这样可以使得检测结果更加稳定,但如 果边缘和边缘之间挨得太近(距离小于滤波半宽值)时反而会影响边缘位置的精度甚至 丢失边缘,所有要根据实际情况来设置。



**梯度阈值**:取值范围 0 到 255,只有梯度值大于该值的边缘点才被检测到,梯度值是度量图像边缘的清晰度或对比度。

| II] BarcodeDemo                               | ×                                                                                                               |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 前开发者,                                         | 操作<br>打开图像<br>ROI<br>检测                                                                                         |
| 图书分类:计算机>程序设计<br>IBBH 978-7-121-04005-4<br>   | 参数<br>读取条码类<br>UFC_A<br>UFC_A<br>EAX-8<br>EAX-8<br>EAX-13<br>CODE_39<br>CODE_393<br>CODE_128<br>INTERLEAVED_2_5 |
| <b>运价:</b> 59.00元                             | 滤波器半宽 1 흦<br>梯度阈值 20 🌲                                                                                          |
| 数据<br>定位梯度 20 最大条宽度 25 ☑ 水平 □ 垂直 □ 45度 □ 135度 | 信息                                                                                                              |
| 9787121040054                                 | ;月秋山山曰: 7.122 ms                                                                                                |

#### 定位梯度:

梯度表示边缘的强度(清晰度),取值范围 0~255,当梯度大于该值的边缘点才会被识别。

最大调宽度:条码的黑条或白条可能出现的最大宽度值。

扫描方向:

**水平**,仅识别水平方向大约±30度范围内的条码;

垂直, 仅识别垂直方向大约±30 度范围内的条码;

45 度, 仅识别 45° 左右范围的条码;

135 度, 仅识别 135° 左右范围的条码。



#### BlobToolDemo.exe 斑点分析

检测图像中目标的数量和几何特征(面积、位置、方位、长轴和短轴),目标对象的定 义为二值图像中黑色或白色像素连通区域,该功能要求图像背景均匀并亮度和目标的亮 度区别比较明显。



分割阈值:设置二值图像的分割阈值,当像素灰度值大于等于该值为白色,否则为黑色。

自动计算阈值:软件将根据直方图分布自动计算出分割阈值。

二值图像预览:为了方便调整阈值,以二值化效果显示当前图像。

**检测类型:**可以设置当前需要检测的目标为黑色像素或白色像素区域。 **连通性:**算法中判定为连通的方法,4连通表示只在上、下、左和右4个方向上相邻才 被判定为互相连通,8连通则在左上、右上、左下和右下方向上也算是互相连通。

限定面积:当目标面积(像素数量)小于该值时会被删除。

主轴椭圆特征: 主轴椭圆为以区域重心为中心拟合的椭圆。



**凸包特征:**分析计算凸包面积。

**最小外接矩形特征:**计算连通区域的最小面积外接矩形。

| 🚴 BlobToolDemo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |                                |                               |                               |                |                            |                             | × |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|--------------------------------|-------------------------------|-------------------------------|----------------|----------------------------|-----------------------------|---|
| 参数设置       其它功能         过速       特征: 面积          特征: 10,00          最小: 10,00          最大: 10000,00          执行          排序       特征: 面积          方式: 降序          执行          加行          道道:          1000,00          九行          方式: 降序          执行          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          1000          10000 |             |                    |                                |                               |                               |                |                            |                             |   |
| 打开图像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 索引<br>0     | 面积<br>4219<br>3162 | 重心(X)<br>229.324<br>57.521     | 重心(Y)<br>317.790<br>415.733   | 灰度平均<br>230.980<br>201.088    | 孔洞数里<br>2<br>0 | 凸包面积<br>44788.0<br>3379.5  | Feret中<br>315.214<br>57.500 |   |
| 设置范围                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2           | 2045<br>830        | 322.529<br>24.713<br>23.924    | 133.987<br>255.333<br>211.569 | 234.654<br>207.292<br>219.551 | 0              | 4962.5<br>1809.5           | 321.973<br>24.000<br>23.500 |   |
| 检测                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5<br>6<br>7 | 694<br>578         | 23, 924<br>53, 595<br>430, 413 | 150.280<br>73.055             | 219.661<br>217.756<br>218.675 | 1 1 1          | 1040.5<br>1070.5<br>1266.5 | 23.500<br>53.000<br>431.500 | ~ |

**过滤**:可以设置目标每种特征的最小值和最大值,当某个目标的特征不在该范围值只能则会被移除,列表中被勾选的项目表示使用该特征的过滤功能。

特征:按照指定特征将所有目标对象进行排序。

方式:排序方式,可以选择升序或降序。

**激活排序:**勾选表示使用排序功能。

CalibrationDemo.exe 标定校准

www.ckvision.net



通过拍摄圆点矩阵标定板,自动计算出图像矫正系数,并将倾斜拍摄的图像矫正成平面, 并输出矫正后的图像。



输入图像:链接需要进行校正的图像。

标记颜色:进行标定的圆点的类型为黑色或者白色。

设置区域:设置需要进行校正的图像区域。

**最小面积:**图像上圆点像素面积。

最大面积:图像上圆点像素面积。

标定方法:有透视与透视和畸变(径向畸变)两种校准类型。

两点之间的距离:圆点与圆点之间的距离,以mm为单位。

标定:获取标定结果。

校正图像:按标定方法校准图像。







#### CaliperDemo.exe 卡尺测量、间距检测



边缘极性:有亮到暗、暗到亮和任意 3 种模式; 亮到暗表示从亮度高过度到亮度低的边缘; 暗到亮表示从亮度低过度到亮度高的边缘; 任意模式则亮到暗和暗到亮的边缘都检测。

**检测位置:**有起始、最后、最宽和全部4种模式; **起始**表示只检测最靠近扫描起始位置的1个间距; **最后**表示只检测离扫描起始位置最远的1个间距; **最宽**表示只检测扫描范围内距离最远的1个间距, **全部**表示检测扫描范围所有间距。

**梯度阈值:**梯度表示边缘的强度(清晰度),取值范围 0~255,只有梯度值大于该值的边缘点才会被检测到。

**滤波半宽**:用于增强边缘和抑制噪音干扰,最小值为1,当边缘模糊不清晰或有噪音干扰时可以增大滤波半宽值,这样可以使得检测结果更加稳定,但如果边缘和边缘之间挨



得太近(距离小于滤波半宽值)时反而会影响边缘位置的精度甚至丢失边缘,所有要根据实际情况来设置。





#### ColorMatchDemo.exe 色彩匹配



预先学习颜色样本,识别出当前颜色属于哪一个样本,并返回匹配程度。





#### ColorThresholdDemo.exe 彩色二值化

|                       |   |              |     | 操作                    |
|-----------------------|---|--------------|-----|-----------------------|
|                       |   |              |     | 打开图像                  |
|                       |   |              |     | 恢复图像                  |
|                       |   |              |     | 保存图像                  |
|                       |   |              |     | 执行                    |
|                       |   | n nin min ni |     | 参数                    |
|                       |   |              |     | RGB ~                 |
|                       |   |              |     |                       |
|                       |   |              |     |                       |
|                       |   |              |     |                       |
|                       |   |              |     |                       |
|                       |   |              |     |                       |
|                       |   |              |     |                       |
| 设置                    |   |              |     | 信息                    |
| 设置<br>lint            | 0 | MaxH         | 255 | 信息<br>消耗时间: 11.121 ms |
| i设置<br>flinH<br>flinS | 0 | MaxH<br>MaxS | 255 | 信息<br>消耗时间: 11.121 ms |

**恢复:**恢复调节之前的图像。 保存图像:另存一张调节好的图像。 参数: RGB 、HSI 。 RGB 即是代表红、绿、蓝三个通道的颜色。

**色调 H(Hue)**:与光波的波长有关,它表示人的感官对不同颜色的感受,如红色、绿色、 蓝色等,它也可表示一定范围的颜色,如暖色、冷色等。

**饱和度 S(Saturation)**:表示颜色的纯度,纯光谱色是完全饱和的,加入白光会稀释饱和 度。饱和度越大,颜色看起来就会越鲜艳,反之亦然。

强度 I(Intensity): 对应成像亮度和图像灰度,是颜色的明亮程度。







#### ContourDemo.exe 轮廓提取





**梯度阈值**:提取边缘轮廓时使用的参数,当边缘对比度较差时需要降低梯度阈值,如果目标边缘清晰,则可以设置比较高,取值范围 0~255。

最短长度: 检测的最短轮廓数据,初始值默认为 20;

最长长度: 检测的最长轮廓数据, 初始值默认为 2000;

高精度: 使用插值功能可以提升定位精度。

**滤波器:**滤波器可以增强边缘效果,但也会丢失细节,有低、中和高3个选项,默认为中。



#### DataMatrixDemo.exe 二维码读取(DM 码)

读取 DataMatrix 二维码,可以自动定位二维码,并允许二维码图像旋转任意角度。



#### 搜索数量:最多被允许搜索到的目标数量。

滤波级别:用于增强边缘和抑制噪音干扰,分为低、中、高三个级别。

**梯度阈值:**梯度表示边缘的强度(清晰度),取值范围 0~255,要求二维码的边缘强度 大于该值才有可能被定位和读取。

缺失长度:允许检测的二维码定位边缺失部分长度,默认值为 20。

**二维码颜色:**选择要读取的二维码是黑色、白色或者任意,其中任意包含了黑色和白色。 **二维码形状:**选择要读取的二维码是正方形、长方形或者任意。

检测结果:显示读取二维码数据结果。

预设尺寸:预先设置所需检测二维码的尺寸大小。

固定单元数:固定设置视野中所需检测二维码的行、列数量。



#### EdgeToolDemo.exe 边缘点检测



#### 初始化 ROI:

初始 ROI 默认位置与大小, ROI 终点位置(在 ROI 边上中间有圆形旋转调节点的边)。

参数

- **边缘极性:** 有亮到暗、暗到亮和任意 3 种模式,从 ROI 起点边开始往结束边的方向上; **亮到暗**表示从亮度高过度到亮度低的边缘; **暗到亮**表示从亮度低过度到亮度高的边缘; **任意**模式则亮到暗和暗到亮的边缘都检测。
- 检测位置:有起始、最后、最宽和全部4种模式; 起始表示只检测最靠近扫描起始位置的1个间距; 最后表示只检测离扫描起始位置最远的1个间距; 最宽表示只检测扫描范围内距离最远的1个间距, 全部表示检测扫描范围所有间距。



**梯度阈值**:取值范围 0 到 255,只有梯度值大于该值的边缘点才被检测到,梯度值是度 量图像边缘的清晰度或对比度。

**滤波半宽**:用于增强边缘和抑制噪音干扰,最小值为1,当边缘模糊不清晰或有噪音干扰时可以增大滤波半宽值,这样可以使得检测结果更加稳定,但如果边缘和边缘之间挨得太近(距离小于滤波半宽值)时反而会影响边缘位置的精度甚至丢失边缘,所有要根据实际情况来设置。

#### FitCircleDemo.exe 圆形测量(拟合圆)

同时检测出多个边缘点并拟合成圆形,可用于测量圆的尺寸和定位。



#### 重置 ROI:

初始 ROI 默认位置与大小。

参数

边缘极性: 有亮到暗、暗到亮和任意 3 种模式;

亮到暗表示从亮度高过度到亮度低的边缘;

www.ckvision.net



**暗到亮**表示从亮度低过度到亮度高的边缘; 任意模式则亮到暗和暗到亮的边缘都检测。

**检测位置:**有起始、最后、最宽和全部4种模式; **起始**表示只检测最靠近扫描起始位置的1个间距; **最后**表示只检测离扫描起始位置最远的1个间距; **最宽**表示只检测扫描范围内距离最远的1个间距, **全部**表示检测扫描范围所有间距。

**梯度阈值:**取值范围 0 到 255,只有梯度值大于该值的边缘点才被检测到,梯度值是度 量图像边缘的清晰度或对比度。

**滤波半宽**:用于增强边缘和抑制噪音干扰,最小值为1,当边缘模糊不清晰或有噪音干扰时可以增大滤波半宽值,这样可以使得检测结果更加稳定,但如果边缘和边缘之间挨得太近(距离小于滤波半宽值)时反而会影响边缘位置的精度甚至丢失边缘,所有要根据实际情况来设置。

扫描数量: 设置扫描边缘点 ROI (图中蓝色图形区域)的数量

**扫描宽度**:扫描边缘点 ROI(图中蓝色图形区域)的宽度,增大宽度可以在一定范围内 求平均,使得计算结果根据稳定。

**容忍误差**:容忍拟合的最小误差值, 拟合出来出来的圆形误差会小于该值, 误差大的点将会被排除。

FitLineDemo.exe 直线测量(拟合直线)





#### 初始化 ROI:

初始 ROI 默认位置与大小。

参数

边缘极性:有亮到暗、暗到亮和任意 3 种模式; 亮到暗表示从亮度高过度到亮度低的边缘; 暗到亮表示从亮度低过度到亮度高的边缘; 任意模式则亮到暗和暗到亮的边缘都检测。

检测位置: 有起始、最后、最宽和全部4种模式;

起始表示只检测最靠近扫描起始位置的1个间距; 最后表示只检测离扫描起始位置最远的1个间距; 最宽表示只检测扫描范围内距离最远的1个间距, 全部表示检测扫描范围所有间距。

**梯度阈值**:取值范围 0 到 255,只有梯度值大于该值的边缘点才被检测到,梯度值是度 量图像边缘的清晰度或对比度。

**滤波半宽**:用于增强边缘和抑制噪音干扰,最小值为1,当边缘模糊不清晰或有噪音干扰时可以增大滤波半宽值,这样可以使得检测结果更加稳定,但如果边缘和边缘之间挨

25 / 138



得太近(距离小于滤波半宽值)时反而会影响边缘位置的精度甚至丢失边缘,所有要根据实际情况来设置。

**扫描数量:** 设置扫描边缘点 ROI (图中蓝色图形区域)的数量

**扫描宽度**:扫描边缘点 ROI(图中蓝色图形区域)的宽度,增大宽度可以在一定范围内 求平均,使得计算结果根据稳定。

**容忍误差**:容忍拟合的最小误差值, 拟合出来出来的圆形误差会小于该值, 误差大的点将会被排除。

HistogramDemo.exe 灰度直方图、亮度检测、自动二值化阈值

检测图像中指定区域的灰度平均值(亮度)和标准差。

www.ckvision.net





**灰度信息**:显示检测后的数据,最大值、最小值、平均值和标准差;标准差是一组数据 平均值分散程度的一种度量,一个较大的标准差,代表大部分数值和其平均值之间差异 较大;一个较小的标准差,代表这些数值较接近平均值。

ImageDemo.exe 图像预处理



深圳市创科自动化控制技术有限公司



对图像做一些预处理(平滑、锐化、腐蚀和膨胀等功能)后并输出处理后的图像。



ImageWarpDemo.exe 环形展开裁剪图像





按 ROI 区域裁剪展开。 裁剪展开之后效果如下图:



ImgTransDemo.exe 图形变换(镜像、平移、旋转、缩放、仿射)















#### 旋转:

| ImgTransDemo                             |                                                                                                                                                                                                              | >                                                                                                                    |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                          | E76508115 DIGITAL CAMERO D3224<br>MADE IN CHINA D3224<br>OUYMPUS IMAGING CORP. MODEL NO. 4 840<br>E76508114 DIGITAL CAMERA 0327<br>MADE IN CHINA 0327<br>MADE IN CHINA 0327<br>E76508113 DIGITAL CAMERA 0327 | 操作         打开图像         保存图像         执行         显示图像         輸出图像         功能选项         ○ 貨像         ○ 平移         ③縮放 |
| · 金典 14 1五                               |                                                                                                                                                                                                              | <ul> <li>● 旋转</li> <li>○ 仿射</li> </ul>                                                                               |
| <b>視隊还</b> 坝<br>☑ 水平镜像<br>□ 垂直镜像<br>□ 旋转 | 平移X: 0 比例X: 1 角度: 10<br>平移X: 0 比例X: 1 角度: 10<br>平移Y: 0 比例Y: 1 ☑ 双线性插值                                                                                                                                        | 信息<br>消耗时间: 24.121 ms                                                                                                |



#### InspectDemo.exe 图像对比缺陷检测

操作 打开图像 设置学习区域 学习模板 编辑模板 执行 掩摸图操作 Half 1 🔮 生成 统计 检查参数 修正模式 Null v **SAE 5W-30** 差异类型 全部 🗸 ÎÎ ☑ 使用掩摸图像 Blob分析 阈值 60 面积 10 来源图像: 模板图像: **摍膜图像:** 差异图像: 信息 消耗时间: 11.455 ms Static

使用模板图像和当前图像进行对比,将差异部分检测出来,可用于一般的缺陷检测。 InspectDemo ×

**设置学习区域:**设置学习区域的 ROI。 **学习模板:**学习定位模板与图像对比模板。 **编辑模板:**编辑定位模板。



**生成:**按照(Half)半宽大小重新把学习的模板生成一个掩模图(屏蔽图)。 统计:把检测测试对比结果图添加到掩模图。

www.ckvision.net



修正模式:

**亮度修正**, 对检测结果由于对画面的明亮程度差异造成的影响可消除; 对比度修正, 对比度是图像中明暗区域最亮的白和最暗的黑之间不同亮度层级 的测量,差异范围越大代表对比越大,差异范围越小代表对比越小; 无修正, 不进行修正, 直接进行检测。

**差异类型:**选择哪一种不同的情况进行检测,亮度或对比度或者是全部(亮度和对比度 都检测)。

Blob 分析,分析对比之后的差异图像。

**阈值:** 设置二值图像的分割阈值,当像素灰度值大于等于该值为白色,否则为黑色。 **面积:** 限制最小的面积,只有缺陷大于限制的面积才会被检测出来。





| InspectDemo | ×                                                                                                                                                                                                                                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 操作         打开图像         设置学习区域         学习模板         编辑模板         执行         掩摸图操作         Half       1 ◆ 生成 统计         检查参数         修正模式       Null ◆         差异类型       全部 ◆         过使用掩摸图像         Blob分析         阈值       60         面积       10 |
|             | 信息<br>消耗时间: 13.456 ms<br>Static                                                                                                                                                                                                                      |

| TINSpectDemo |          |       |       | ×                                |
|--------------|----------|-------|-------|----------------------------------|
|              | SAE<br>L | 5W-30 |       | 操作                               |
| THE AND A    |          |       | 左杆凸版: | 高思<br> 消耗时间: 11.668 ms<br>Static |



#### ModelDemo.exe 模板轮廓匹配定位(老版本)

使用图像的边缘轮廓特征作为模板,在图像中搜索形状上相似的目标,可以设置角度和 比例范围,可用于定位、计数和判断有无等



**设置学习范围:**将会在画面中出现一个青蓝色的 ROI 矩形框,点击选取矩形框,再将该矩形移动到需要作为标准模板的图像区域并调整大小(如上图)。 学习模板:按学习 ROI 在图像上学模板轮廓。 编辑模板:学模板之后可查看编辑模板。



www.ckvision.net
#### 深圳市创科自动化控制技术有限公司

**精细级别**:定义边缘轮廓的细腻程度,有 Fine、Noraml 和 Coarse3 个选项, Fine 模式精度最高,但边缘太模糊时将无法检测到边缘, Noraml 和 Coarse3 模式则会通 过压缩方式来提取模糊的边缘,同时会丢失细节部分,并会影响定位进精度。

滤波器:用于增强边缘提取功能,跟精细级别类似,但不会影响定位精度。

**梯度阈值:**取值范围0到255,只有梯度值大于该值的边缘点才被检测到,梯度值 是度量图像边缘的清晰度或对比度。

**最短边缘:**用于过滤长度小于该值的边缘轮廓。

重新学习:当修改参数后需要点击"重新学习"按钮来获得新的边缘轮廓。

**编辑选项:**手动编辑模板功能,"指示"可修改当前十字点位置,点击"擦除"或 "恢复"按钮后可以使用鼠标在画面中对着边缘轮廓进行擦除或者恢复,上图中蓝 色轮廓部分为被擦除,绿色部分为正在使用的边缘轮廓。

**画笔大小:**设置擦除或者恢复画笔的尺寸大小。

**标记点:** 画面中红色十字标为模板的标记点,在"指示"模式下可以使用鼠标点击 选取并拖动调整位置。

装载模板:从文件中加载模板数据。

保存模板:将模板数据保存到文件中。

设置自由度,

角度范围:匹配目标相对于模板可能存在的最小角度,值范围-180到180。

比例范围: 匹配目标相对于模板可能存在的最小比例,值范围80到120(原始比例值100)。

| 角度范围 | -30 | 到 | 30  |  |
|------|-----|---|-----|--|
| 比例范围 | 100 | 到 | 100 |  |

**设置搜索范围**:在图像上画出一个红色的 ROI 矩形框,该矩形框为搜索目标是的搜索范围, 如果是全图搜索可以不用设置。





搜索数量:最多被允许搜索到的目标数量。

**最小分数:**分数表示目标和模板的相似程度,分数越高越相似,最大值100表示完全匹配,目标分数必须大于该值才会被搜索到,该参数值将会影响搜索速度。

**梯度阈值**:提取边缘轮廓时使用的参数,当边缘对比度较差时需要降低梯度阈值,如果目标 边缘清晰,则可以设置比较高,取值范围 0<sup>~</sup>255,一般设为 40 左右,该参数值将会影响搜 索速度。

匹配极性:可以设置正常和反转,正常表示目标和模板极性相同,反转则表示相反。

**压缩级别:**在搜索过程中对图像进行压缩处理可以提升搜索速度,但也会降低识别率(影响 程度跟模板和目标图像背景复杂度有关),一般采用"自动"设置。



**分数:**匹配目标与模板的相似度。 **位置:**匹配目标相对于当前图像的坐标位置。 **角度:**匹配目标相对于模板的旋转角度。 **比例:**匹配目标相对于模板的缩放比例。



# MultiModelDemo.exe 多轮廓匹配定位(新版本)

以边缘轮廓特征作为模板,可学习多个目标作为模板,在图像中搜索形状相似的目标。



**学习模板:** 以图像上的 ROI 所在位置学习模板轮廓。 编辑模板:点击"编辑"按钮将会弹出编辑模板对话框,在编辑模板对话框下可以对模 板进行编辑。







特征数量:模板特征数量占学习区域特征数量的百分比。

轮廓长度:轮廓长度参数用于过滤,长度小于该值的轮廓将会被删除。

减少特征点:是否减少模版特征点数量。

**金字塔级别:**可预览当前图像模板层数,点击获取边缘轮廓按钮后会自动获取金字塔级别数值。

**掩模编辑:**点击"屏蔽"按钮可设置掩模图像屏蔽区域,设置完屏蔽区域后,需要点击 "获取边缘轮廓"才能成功屏蔽所选区域,如上图中红色区域部分为被屏蔽,绿色部分 为正在使用的边缘轮廓,点击"恢复"按钮可恢复图像中被屏蔽的区域。

**画笔大小:**设置擦除或者恢复画笔的尺寸大小。

学习:重新学习轮廓模板。



| Search | Demo |        |         |         |       |        |       |           |                     |
|--------|------|--------|---------|---------|-------|--------|-------|-----------|---------------------|
|        |      |        |         |         | -     | 1.000  | 操作    |           | W. J. J. 1          |
|        |      |        |         |         | 11    |        |       | 打开图像      | Model_2             |
|        |      |        |         |         |       |        |       | 清除模板      |                     |
|        |      |        |         |         |       |        |       | 学习模板      | 编辑模板                |
|        |      |        |         |         | 1     | 1      |       | 搜索区域      | 装载模板                |
|        |      |        |         |         | V     |        |       | 搜索        | 保存模板                |
|        |      |        |         |         | 1     |        | 参数讨   | 置         |                     |
|        |      |        |         |         |       | . 1966 | 投索    | 微量 1<br>、 | 最小分数 70<br>最大角度 180 |
|        |      |        |         |         | 2     | 6      | 最小    | 比例 100    | 最大比例 100            |
|        |      |        |         |         | 1     |        | 重叠    | 距离 20     | 目标极性正常 ~            |
|        |      |        |         |         |       |        | 搜索    | 速度        | 5                   |
|        |      |        |         |         | 1     |        | 定位    | 精度        | 5                   |
|        | 索引   | 分数     | 位置(X)   | 位置(Y)   | 角度    | 比例     |       |           |                     |
|        | 0    | 99.261 | 442.005 | 195.996 | 0.040 | 1.000  |       |           |                     |
|        |      |        |         |         |       |        | Stati | c         |                     |
|        |      |        |         |         |       |        | Stati | c         |                     |

**最小分数:**分数表示目标和模板的相似程度,分数越高越相似,最大值100表示完全匹配, 目标分数必须大于该值才会被搜索到,该参数值将会影响搜索速度。

**角度:**可以设置被搜索目标可能存在的角度范围,角度为目标相对于模板的角度,取值范围-180<sup>~</sup>180。

**比例:**可以设置被搜索目标可能存在的比例范围,比例为目标相对于模板的比例,取值范围 80<sup>~120</sup>。

重叠距离: 匹配多个目标时之间的最小距离不能小于重叠距离, 小于则忽略。

匹配极性:可以设置正常和反转,正常表示目标和模板极性相同,反转则表示相反。

**搜索速度:** 总共有 10 个等级,等级为 0<sup>~</sup>9,默认为 5,设置的搜素速度级别越高,识别度会 有所下降。

**定位精度:** 总共有 10 个等级,等级为 0<sup>~</sup>9,默认为 5,设置的定位精度级别越高,搜索速度 会有所下降。

搜索数量:最多被允许搜索到的目标数量。



| 🛃 Search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Demo |        |          |         |          |       |                                            | ×                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|----------|---------|----------|-------|--------------------------------------------|---------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |        |          |         | я        |       | 操作                                         | Model 1<br>Model 2              |
| in .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |        |          | 1       |          | ,     | 清泳模板<br>学习模板<br>#安区##                      | 编辑模板                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |        |          |         | V        |       | 授素区域                                       | 保存模板                            |
| La Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |          |         | 1        | 2     | 搜索数量 1<br>最小角度 <sup>-180</sup><br>最小比例 100 | 最小分数 70<br>最大角度 180<br>最大比例 100 |
| and the second sec |      |        |          |         | 7        | 5     | 重叠距离 20<br>搜索速度                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 충리   | 公志     | (京署(王)   | 位要(双)   | <u> </u> | 比例    | 定位精度                                       | 5                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1    | 99.391 | 447. 496 | 358.015 | 0.009    | 1.000 | Static                                     |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |        |          |         |          |       | <br>Static<br>Static<br>」消耗时间: 4.542 ms    |                                 |

# NCMatchDemo.exe 灰度匹配定位

在图像指定区域中搜索跟模板图像相似的目标,使用灰度归一化互相关匹配方法,目标 图像和模板图像允之间许存在亮度和对比度变化,可用于定位、计数和判断有无等。





**学习:**点击"学习"按钮可进入学习模式,在学习模式下将画面中的 ROI 拖动到需要作为模板的图像区域,然后点击"确认"按钮完成学习。

| 设置标记点           | >               |
|-----------------|-----------------|
| A CONTRACTOR OF | X: <u>52.20</u> |
| 100             | Y: 49.06        |
| +               |                 |
| 1000            | 确认              |
|                 | 取消              |

**模板:**显示模板图像数据和模板的标记点(红色十字标),可以使用鼠标点击选取标记 点,然后再拖动可调整标记点位置。 **装载模板:**从文件中加载模板数据。

保存模板:将模板数据保存到文件中。

搜索数量:最多被允许搜索到的目标数量。

**最小分数:**分数表示目标和模板的相似程度,分数越高越相似,最大值 100 表示完全匹配,目标分数必须大于该值才会被搜索到,该参数值将会影响搜索速度。

亚像素插值: 使用插值功能可以提升定位精度。





# QRCodeDemo.exe 二维码检测(QR 码)

读取 QR 码,可以自动定位 QR 码,并允许 QR 图像旋转任意角度。

| 船 QRCod | leDemo           |                  |               |              |                |       |                                       |                | ×   |
|---------|------------------|------------------|---------------|--------------|----------------|-------|---------------------------------------|----------------|-----|
| 1       |                  |                  | 0 (198 86, 97 | 32)          |                |       | 打开图像                                  | 执行核            | 到   |
| ý       |                  |                  |               |              | 1 (468. 79, 11 | 2.81) | 分割设置<br>阈值                            |                | 150 |
|         |                  | 3 0              | <b>1</b>      | 3            | : (449.00,372  |       | 参数设置<br>搜索二维码数量<br>检测二维码颜色<br>定位核最小面积 | 1<br>黑色<br>100 |     |
| 编号<br>0 | 位置(X)<br>323.927 | 位置(Y)<br>237.969 | 角度<br>356.715 | 文本<br>qe3Ufh |                | 5     | 定位核最大面积<br>消耗时间: 2.586                | 5000<br>ms     |     |
|         |                  |                  |               |              |                | [     | 确定                                    |                | 取消  |



### 分割设置

阈值:设置二值图像的分割阈值,当像素灰度值大于等于该值为白色,否则为黑色。
自动计算阈值:软件将根据直方图分布自动计算出分割阈值。
二值图像预览:为了方便调整阈值,以二值化效果显示当前图像。
参数设置
搜索二维码数量:最多被允许搜索到的二维码数量。
检测二维码颜色:选择要读取的二维码是黑色、白色。
定位核最小面积:定位标记最小面积。
定位核最大面积:定位标记最大面积。

## ReadOcrDemo.exe 字符读取

读取标签上的字符文本,需要事先将标准字符录入字符集合中。

| ReadOcrDemo | 0                                |                            |                           |            |                  |                                         |
|-------------|----------------------------------|----------------------------|---------------------------|------------|------------------|-----------------------------------------|
|             |                                  | E765                       | 08115                     | DIGIT      | DC3.7V<br>AL CAM | 操作<br>打开图像<br>学习<br>字符集                 |
|             | and a                            |                            |                           | 1.4.5      |                  | 装载字符集                                   |
|             |                                  | 15 August                  | and the second            | The Test   |                  | 保存字符集                                   |
|             | OLY                              | MPUS                       | IMAGING                   | CORP.      | ODEL N           | 阈值设置                                    |
|             | -                                |                            | *3                        |            | DC3.7V:          | 执行                                      |
|             |                                  | E76                        | ☆ろ<br>輸入字符串: E76508<br>确认 | 115        | IN CHI           | 分割参数<br>字符 白底黒字 〜<br>限制面积 <sup>10</sup> |
|             |                                  |                            |                           | Same in    | The seal         | 最小宽度 10                                 |
|             | OLY                              | MPUS                       | IMAGING                   | CORP.      | DC3.7V           | 最大宽度 30<br>最小高度 20                      |
|             |                                  | E76!                       | 508113                    | DIGI       | FAL CAN          |                                         |
|             |                                  |                            |                           |            |                  | □ 昌井町装字付 水平间隔 5                         |
| ·符 分数<br>0  | 宽度<br>23                         | 高度<br>35                   | 分数阈值                      | 60         |                  | 垂直间隔 5                                  |
| U<br>0<br>0 | 20<br>21<br>20<br>21<br>21<br>21 | 36<br>35<br>36<br>36<br>36 | ■<br>返回串<br>▼             | \$35553555 |                  | 信息                                      |

**学习:**先调整 ROI 后点"执行",然后在点"学习",出现输入学习字符框,填入对应 字符,确认完成字符学习。

**字符集:**学习字符后的字符集合。



| 字符 | 宽度 | 高度 | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 26 | 42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 26 | 42 | and the second s |
| 6  | 26 | 42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5  | 26 | 42 | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0  | 26 | 42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8  | 26 | 42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1  | 26 | 42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1  | 26 | 42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5  | 26 | 42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |    |    | 删除                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |    |    | 关闭                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|   | serbenno          |                | 1911-17-1      |             |                       | 1 48/5    |
|---|-------------------|----------------|----------------|-------------|-----------------------|-----------|
|   |                   | P              | 1111 0.0       |             | DC3.7V                | 打开图像      |
|   | il s              |                | E765           | 508115      | MADE IN CHI           | 学习        |
|   |                   | -              |                |             |                       | 字符集       |
|   |                   |                |                |             |                       | 装载字符集     |
|   |                   |                | Carlo ant      | and an area |                       | 保存字符集     |
|   |                   | OL             | MPUS           | IMAGING (   | ORP. MODEL            | 阈值设置      |
|   |                   | _              |                |             | DC3.7V<br>DIGITAL CAN | 执行        |
|   |                   |                | E76            | 508114      | MADE IN CHI           | 分割参数      |
|   |                   | the second     | TANK TO        |             |                       | 字符 白底黑字 ~ |
|   |                   |                |                |             |                       | 限制面积 10   |
|   |                   |                |                |             |                       | 最小宽度 10   |
|   |                   | OU             | MPUS           | MAGING      | CORP. MODEL           | 最大宽度 30   |
|   |                   | -              |                |             | DC3.7V                | 最小高度 20   |
|   |                   | 100            |                |             | DIGITAL CAN           | 最大高度 45   |
|   |                   |                | E76            | 508113      | MADE IN CH            | □ 合并断裂字符  |
|   | /\#6              | ***            | 古麻             | , 识别参数和结    | 果                     | 水平间隔 5    |
| J | 100               | 23             | تھا<br>35      | 分数阈值        | 30                    | 垂直间隔 5    |
|   | 100<br>100<br>100 | 20<br>21<br>20 | 36<br>35<br>36 | 返回串 [       |                       | 信息        |
|   | 100               | 21             | 36<br>36       | ~           |                       |           |

**字符集:**选择当前使用的字符集工具,点击右边的"..."按钮可以弹出字符集属性对话框。

阈值设置: 设置字符和背景之间亮度的分界线, 用于分割字符区域。



| 戓值 | ☑自动 | 169 |
|----|-----|-----|
|    |     |     |
|    |     |     |
|    | 确认一 | 取消  |

自动阈值: 自动计算分割阈值功能。

字符极性:设置字符是黑色还是白色。

限制面积:设置噪声点面积,面积小于该值的区域将被过滤。

字符宽度:设置字符的最小宽度和最大宽度。

字符高度:设置字符的最小高度和最大宽度。

**合并断裂字符**:如果某个字符断裂成多个部分(点阵字符),可以使用该功能合并。

**水平间隔:**设置断裂字符水平方向间隔,水平间隔小于该值不能进行合并。

垂直间隔:设置断裂字符垂直方向间隔,垂直间隔小于该值不能进行合并。

分数阈值:设置识别字符的最小分数,小于该分数的字符将不能识别。

| ReadOcrDemo       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | ×                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|
|                   | E76508115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DC3.7V<br>DIGITAL CAM<br>MADE IN CHI | 操作<br>打开图像<br>学习                |
| T. B.             | and the second s |                                      | 字符集                             |
| - 575 (7.8%)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 装载字符集                           |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CORP. MODEL N<br>DC3.7V:             | 1 保存字付集<br>阈值设置<br>执行           |
|                   | E76508114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MADE IN CHI                          | 分割参数                            |
|                   | <u>よ。</u><br>学习<br>輸入字符串: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                    | 字符 白底黒字 ~<br>限制面积 10<br>最小宽度 10 |
|                   | OLYMPUS Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | □ 取消 DEL M<br>C3.7V                  | 最大宽度 30<br>最小高度 20              |
|                   | E76508113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DIGITAL CAN<br>MADE IN CHI           | 最大高度 45                         |
| ■<br>字符 分数<br>? 0 | 党度         高度         识别参数和约           23         36         分数阈值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                   | 水平间隔 5<br>垂直间隔 5                |
|                   | 返回串                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ?                                    | 信息                              |





| 🛃 ReadO          | OcrDemo              |                      |                      |         |     |       |           |                     |                |             | ×                                                |
|------------------|----------------------|----------------------|----------------------|---------|-----|-------|-----------|---------------------|----------------|-------------|--------------------------------------------------|
|                  |                      | DE                   | E7(                  | 650     | 81  | 15    | C<br>N    | DC3.7<br>DIGITAL CA | V:<br>M<br>HII | 操作<br>打<br> | <ul> <li>开图像</li> <li>学习</li> <li>字符集</li> </ul> |
| 100              |                      |                      |                      |         |     |       |           |                     |                | 装           | 賊字符集                                             |
|                  |                      |                      |                      |         | 322 | No. C |           |                     |                | 保ィ          | 存字符集                                             |
| 100              |                      | OL                   | MPL                  | JS IN   | IAG | ING   | COR       | P. MODE             | LN             | 阈           | 值设置                                              |
|                  |                      | P-                   |                      |         | 84  |       | [         | DC3.                | 7V:            |             | 执行                                               |
|                  |                      |                      | E/                   | 65U     | 81  | 14    | P         | MADE IN C           | HI             | 分割参数        |                                                  |
|                  |                      | -                    | TARCE                | and and | 1   |       | 200       | ALC: LANGE          |                | 字符          | 白底黑字 ~                                           |
| 100              |                      |                      |                      |         |     |       |           |                     |                | 限制面积        | 10                                               |
| 170              |                      |                      |                      |         |     |       |           |                     |                | 最小宽度        | 10                                               |
| 375              |                      | OU                   | MP                   | US IN   | AAG | ING   | COF       | P. MODE             | LI             | 最大宽度        | 30                                               |
| 903              |                      | -                    |                      |         |     |       |           | DC3.                | 7V             | 最小高度        | 20                                               |
| 14               |                      | 100                  |                      |         | -   | 4.0   | 1         | DIGITAL C           | AN             | 最大高度        | 45                                               |
|                  |                      |                      | E7                   | 650     | 81  | 13    | 1         | MADE IN C           | HI             |             | 并断裂字符                                            |
| ي بي ب           | /\#6                 | **#                  | 古麻                   |         | •   | 识别参数和 | 结果        |                     |                | 水平间隔        | 5                                                |
| -7-15<br>E       | 93                   | 23                   | 37                   |         |     | 分粉调值  | 60        |                     |                | 垂直间隔        | 5                                                |
| 7<br>6<br>5<br>0 | 97<br>95<br>98<br>96 | 21<br>21<br>21<br>21 | 37<br>37<br>37<br>37 |         |     | 返回串   | E76508114 |                     |                | 信息          |                                                  |
| 8                | 96                   | 22                   | 36                   |         | •   |       |           |                     |                |             |                                                  |

返回串:显示识别结果字符串文本。



# SearchDemo.exe 模板轮廓匹配定位(新版本)

以边缘轮廓特征作为模板,在图像中搜索形状相似的目标。

| 🚱 SearchDemo                                                                                                     | ×                      |
|------------------------------------------------------------------------------------------------------------------|------------------------|
|                                                                                                                  | 操作                     |
|                                                                                                                  | 打开图像                   |
|                                                                                                                  | 学习模板编辑模板               |
| and the second | 装载模板 保存模板              |
|                                                                                                                  | 搜索区域 搜索                |
|                                                                                                                  | 参数设置                   |
|                                                                                                                  | 搜索数量 1 最小分数 70         |
|                                                                                                                  | 最小角度 -180 最大角度 180 I80 |
|                                                                                                                  | 最小比例 100 最大比例 100      |
|                                                                                                                  | 重叠距离 20 目标极性 正常 🗸      |
|                                                                                                                  | 投索速度 5                 |
|                                                                                                                  | 定位精度 6                 |
|                                                                                                                  |                        |
| ID         分数         位置(X)         位置(X)         角度         比例                                                  |                        |
|                                                                                                                  | Static<br>Static       |
|                                                                                                                  | Static                 |

学习模板: 以图像上的 ROI 所在位置学习模板轮廓。

**编辑模板**:点击"编辑"按钮将会弹出编辑模板对话框,在编辑模板对话框下可以对模 板进行编辑。



| 模板显示 | ×                                                                     |
|------|-----------------------------------------------------------------------|
|      |                                                                       |
|      | 特征数量     5       轮廓长度     20                                          |
|      | 減少特征点     否     ◇       初始金字塔级别     3     ◇       目标金字塔级别     0     ◇ |
| *    | <ul> <li>● 指示</li> <li>○ 擦除</li> </ul>                                |
|      | <ul> <li>恢复</li> <li>画笔 5</li> <li>学习</li> <li>确认</li> </ul>          |
|      | 取消                                                                    |

特征数量:模板特征数量占学习区域特征数量的百分比。

轮廓长度:轮廓长度参数用于过滤,长度小于该值的轮廓将会被删除。

减少特征点:是否减少模版特征点数量。

**金字塔级别**:可预览当前图像模板层数,点击获取边缘轮廓按钮后会自动获取金字塔级别数值。

**掩模编辑:**点击"屏蔽"按钮可设置掩模图像屏蔽区域,设置完屏蔽区域后,需要点击 "获取边缘轮廓"才能成功屏蔽所选区域,如上图中红色区域部分为被屏蔽,绿色部分 为正在使用的边缘轮廓,点击"恢复"按钮可恢复图像中被屏蔽的区域。

**画笔大小:**设置擦除或者恢复画笔的尺寸大小。

学习:重新学习轮廓模板。



| SearchDe | emo    |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |      |      |     |   |
|----------|--------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|------|------|-----|---|
|          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 操作     |      | 71.  |     |   |
|          |        |         |         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 20000 |        | 「开图像 |      |     |   |
|          |        |         |         | and a state of the |         |        | 学习模板 | 编辑   | 漠板  |   |
|          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        | 裝載模板 | 保存   | 摸板  |   |
|          |        |         |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 1000  |        | 數案区域 | 搜    | 索   |   |
|          |        |         |         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1996    | 参数设置   |      |      |     |   |
|          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 搜索数重   | 1    | 最小分数 | 70  |   |
|          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 最小角度   | -180 | 最大角度 | 180 |   |
|          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 最小比例   | 100  | 最大比例 | 100 |   |
|          |        |         |         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4       | 重叠距离   | 20   | 目标极性 | 正常  | ~ |
|          |        |         |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •       | 搜索速度   |      |      | 5   |   |
|          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 定位精度   |      | •    | 5   |   |
|          |        |         |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        |      |      |     |   |
|          | 分数     | 位置(X)   | 位置(Y)   | 角度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 比例      |        |      |      |     |   |
|          | 99.391 | 445.995 | 359.516 | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000   |        |      |      |     |   |
|          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Static |      |      |     |   |
|          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Static |      |      |     |   |

搜索数量:最多被允许搜索到的目标数量。

**最小分数:**分数表示目标和模板的相似程度,分数越高越相似,最大值100表示完全匹配, 目标分数必须大于该值才会被搜索到,该参数值将会影响搜索速度。

**角度:**可以设置被搜索目标可能存在的角度范围,角度为目标相对于模板的角度,取值范围 -180~180。

**比例:**可以设置被搜索目标可能存在的比例范围,比例为目标相对于模板的比例,取值范围 80<sup>~</sup>120。

重叠距离: 匹配多个目标时之间的最小距离不能小于重叠距离, 小于则忽略。

匹配极性:可以设置正常和反转,正常表示目标和模板极性相同,反转则表示相反。

**搜索速度:** 总共有 10 个等级,等级为 0<sup>~</sup>9,默认为 5,设置的搜素速度级别越高,识别度会 有所下降。

**定位精度:**总共有 10 个等级,等级为 0<sup>~</sup>9,默认为 5,设置的定位精度级别越高,搜索速度 会有所下降。



| 7                            |             | 操作<br>打<br>学<br>英<br>授 | 开图像<br>之习模板<br>《载模板<br>《索区域 | 編辑<br>保存<br>投 | 模板   |
|------------------------------|-------------|------------------------|-----------------------------|---------------|------|
|                              |             | 打<br>学<br>装<br>機       | 开图像<br>之习模板<br>或模板<br>索区域   | 编辑<br>保存<br>投 | 模板   |
|                              |             | 学援                     | 习模板<br>载模板<br>索区域           | 编辑<br>保存<br>搜 | 模板   |
|                              |             | 装援                     | 载模板<br>索区域                  | 保存            | 模板   |
|                              |             | 援参教设置                  | 索区域                         | 搜             | *    |
| 전성에 실패했다. ~ 야간되다. 전성이        |             | 参教设罟                   |                             |               | 糸    |
|                              |             | 参数设置                   |                             |               |      |
|                              |             |                        |                             |               |      |
|                              |             | 搜索数里                   | 1                           | 最小分数          | 70   |
| 회원님께 방송되었는 🗢 🔫 그 화원님이 있었다.   |             | 最小角度                   | -180                        | 最大角度          | 180  |
|                              |             | 最小比例                   | 100                         |               | 100  |
|                              |             | 重叠距离                   | 20                          | 目标极性          | 正常 ~ |
|                              |             | 柳壶油度                   |                             |               |      |
|                              |             | 投杂团度                   |                             |               |      |
| Sand and a second second     |             | 定位精度                   |                             |               | 5    |
|                              | States Zent |                        |                             |               |      |
| 分数 位置(X) 位置(Y) 角度            | 比例          |                        |                             |               |      |
| 96.449 262.345 277.996 2.982 | 1.003       |                        |                             |               |      |
|                              |             | Static                 |                             |               |      |
|                              |             | Static                 |                             |               |      |

- 分数: 匹配目标与模板的相似度。
- 位置: 匹配目标相对于当前图像的坐标位置。
- 角度: 匹配目标相对于模板的旋转角度。
- 比例: 匹配目标相对于模板的缩放比例。

# 2 Bin\_x64

2.1 等同 Bin 文件内功能。



# 3 Document 文档

CKVision.chm

CKVision 简介.pdf

版本说明.doc

CKVISION SDK 说明



# 4 Include 开发库头文件

| CKAcmeTool.h      | 顶点测量            | (CAcmeTool )             | CKMeasure.dll     |
|-------------------|-----------------|--------------------------|-------------------|
| CKBarcode.h       | 一维码读取           | (CReadBarcode)           | CKReader.dll      |
| CKBase.h          | 基础模块            |                          | CKBase.dll        |
| CKBaseDef.h       | 导出/导入、数据线       | 结构定义                     |                   |
| CKBlob.h          | 斑点分析、图像对        | 比                        | CKBlob.dll        |
| CKBlobAnalyzer.h  | 斑点分析            | (CBlobAnalyze)           |                   |
| CKBlobData.h      | Blob 数据         | (CBlobData )             |                   |
| CKBlobDef.h       | Blob 定义         |                          |                   |
| CKCalibration.h   | 标定功能            | (CCalibration )          | CKCalibration.dll |
| CKCaliper.h       | 卡尺、间距测量(C       | Caliper)                 | CKMeasure.dll     |
| CKCharset.h       | 字符集             | (CCharset)               | CKReader.dll      |
| CKColor.h         | 颜色              |                          | CKColor.dll       |
| CKColorIdentify.h | 颜色颜色识别 (CC      | ColorSamples CCol        | orldentify )      |
| CKColorMonitor.h  | 颜色监测            | ( CColorMonitor )        |                   |
| CKColorSample.h   | 颜色样本            | (CColorSample)           |                   |
| CKContour.h       | 轮廓检测、轮廓缺        | ·陷                       | CKContour.dll     |
| CKContourDefect.h | 轮廓缺陷            | ( CContourDef            | ect )             |
| CKContourDetect.h | 轮廓检测            | ( CContourDet            | ect )             |
| CKDataMatrix.h    | 读取 DataMatrix 二 | 二维码 <b>(</b> CDataMatrix | ) CKReader.dll    |
| CKDotMatrix.h     | 圆形矩阵标定板         | ( CDotMatrix )           |                   |
| CKEdgeTool.h      | 边缘点检测           | (CEdgeTool)              | CKMeasure.dll     |
| CKFileStore.h     | 文件存储结构          | ( CFileStore )           | CKBase.dll        |
| CKFindBarcode.h   | 读取一维码           | (CFindBarcode            | ) CKReader.dll    |
| CKFindModel.h     | 形状模型搜索          | (CFindModel)             | CKLocate.dll      |
| CKFitCircle.h     | 圆拟合工具           | (CFitCircle)             | CKMeasure.dll     |
| CKFitLine.h       | 线拟合工具           | (CFitLine)               |                   |
| CKFrameTrans.h    | 坐标系变换           | ( CFrameTrans            | ) CKBase.dll      |



### 深圳市创科自动化控制技术有限公司

| CKGDI.h          | 图形显示         |                 | CKGDI.dll   |
|------------------|--------------|-----------------|-------------|
| CKGdiBoxScan.h   | 旋转矩形框内扫描线    | (CGdiBoxScan)   |             |
| CKGdiCircle.h    | 圆形           | (CGdiCircle)    |             |
| CKGdiContour.h   | 轮廓图形         | ( CGdiContour ) |             |
| CKGdiEllipse.h   | 椭圆图形         | ( CGdiEllipse ) |             |
| CKGdiFigure.h    | 图形功能(基类)     | (CGdiFigure)    |             |
| CKGdiFrame.h     | 坐标系显示        | (CGdiFrame)     |             |
| CKGdiHistogram.h | 直方图          | (CGdiHistogram) |             |
| CKGdiLine.h      | 线段图形         | ( CGdiLine )    |             |
| CKGdiMask.h      | 掩摸显示         | (CGdiMask)      |             |
| CKGdiModel.h     | 模型轮廓显示       | ( CGdiModel)    |             |
| CKGdiPoint.h     | 点、十字显示       | ( CGdiPoint )   |             |
| CKGdiPolygon.h   | 多边形图形 (C     | GdiPolygon )    |             |
| CKGdiProfile.h   | 投影曲线边缘位置     | (CGdiProfile)   |             |
| CKGdiRect.h      | 矩形框          | ( CGdiRect )    |             |
| CKGdiRing.h      | 圆环图形         | (CGdiRing)      |             |
| CKGdiRingScan.h  | 圆环内扫描线       | (CGdiRingScan)  |             |
| CKGdiRotBox.h    | 旋转矩形         | ( CGdiRotBox )  |             |
| CKGdiText.h      | 文本显示         | (CGdiText )     |             |
| CKGdiType.h      | 模板类显示        | ( CGdiType )    |             |
| CKGdiView.h      | 图形视图窗口       | ( CGdiView )    | CKGDI.dll   |
|                  |              |                 |             |
|                  |              |                 |             |
| CKGeoMeas.h      | 基本儿何测重<br>1) | (CKVISION_API ) | CKBase.dll  |
| CKHasp.h         | 校验锁          |                 |             |
| CKHistogram.h    | 直方图、分割阈值     | (CHistogram)    |             |
| CKHSIThreshold.h | HSI 颜色抽取 (CH | ISIThreshold )  | CKColor.dll |



### 深圳市创科自动化控制技术有限公司

| CKImage.h        | 图像基本功能        | (CPrImage)       | CKBase.dll      |
|------------------|---------------|------------------|-----------------|
| CKImgConve.h     | 图像转换、高级调整     | ( CKVISION_API ) | CKBase.dll      |
| CKImgFilter.h    | 图像滤波          |                  |                 |
| CKImgMorph.h     | 图像灰度形态学       |                  |                 |
| CKImgOpera.h     | 图像算术和逻辑       |                  |                 |
| CKImgTrans.h     | 图像变换(镜像、平移    | 多、旋转、缩放、等        | È)              |
| CKLocate.h       | 形状匹配、识别定位     |                  | CKLocate.dll    |
| CKMask.h         | 图像掩摸          | (CMask)          | CKBase.dll      |
| CKMeasDef.h      | 测量定义          |                  | CKMeasure.dll   |
| CKMeasure.h      | 测量            |                  | CKMeasure.dll   |
| CKModel.h        | 模型特征点模板       | (CModel )        | CKLocate.dll    |
| CKModelContour.h | 模型轮廓          | ( CModelCont     | our )           |
| CKNCMatch.h      | 灰度区域匹配        | (CNCMatch)       |                 |
| CKNCPat.h        | 灰度模板          | (CNCPat)         |                 |
| CKOverlay.h      | 覆盖图功能         | (COverlay )      | CKGDI.dll       |
| CKPatInspect.h   | 基于图像对比缺陷检测    | ( CPatInspect    | ) CKBlob.dll    |
| CKPixelStat.h    | 像素统计功能        | ( CPixelStat )   | CKBase.dll      |
| CKPointVector.h  | 坐标点容器         | (CPointVector    | ) CKMeasure.dll |
| CKProfile.h      | 图像截面投影曲线      | (CProfile)       | CKMeasure.dll   |
| CKReadDXF.h      | 读取 DXF 文件生成模板 | 反轮廓 (CReadD      | XF) CKGDI.dll   |
| CKReader.h       | 读取条码、字符       |                  | CKReader.dll    |
| CKReadOcr.h      | 字符识别          | ( CReadOcr )     | CKReader.dll    |
| CKReadQRCode.h   | 读取 QR 码       | ( CReadQRCoc     | de )            |
| CKScanEdge.h     | 扫描边缘          | (CScanEdge)      | CKMeasure.dll   |
| CKScanSpace.h    | 扫描间距          | (CScanSpace)     | )               |
| CKShapeMatch.h   | 边缘轮廓形状匹配(新)   | (CShapeMatch     | n) CKLocate.dll |
| CKShapeModel.h   | 形状模板(新)       | (CShapeModel)    | CKLocate.dll    |
| CKSharpAssess.h  | 图像清晰度评估       | ( CSharpAsses    | s) CKBase.dll   |



# 5 Install 运行库安装包

5.1 VC2008 运行包

5.2 加密锁驱动

# 6 Lib 开发库 Lib 文件

CKBase.lib CKBlob.lib CKCalibration.lib CKColor.lib CKContour.lib CKGDI.lib CKLocate.lib CKMeasure.lib CKReader.lib

# 7 Lib\_x64 开发库 64 位版本文件

CKBase.lib CKBlob.lib CKCalibration.lib CKColor.lib CKContour.lib CKGDI.lib CKLocate.lib CKMeasure.lib CKReader.lib



# 8 Samples 功能 API 调用实例

# 8.1)

以 vs 文件->新建->项目->创建 MFC 应用程式, 基于对话框模、在静态库中使用 MFC 的实例。

| 新建项目                                                                      |                          |                                                                                                                                                                                                                                         |                                                                                                  |                                                                                                               | ? ×       |
|---------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------|
| 项目举型(P);                                                                  |                          | 模板(T):                                                                                                                                                                                                                                  |                                                                                                  | .NET Framework 3.5                                                                                            | ×         |
| Visual C++<br>ATL<br>CLR<br>單规<br>MFC<br>智能设备<br>Win32<br>分布式系统<br>其他项目类型 |                          | Visual Studio 已安装的模板<br>器 MFC ActiveX 拉件<br>器 MFC 应用程序<br>我的模板<br>① 搜索联机模板                                                                                                                                                              | 置 MFC DLL                                                                                        | t                                                                                                             |           |
| 用于创建使用 Micro                                                              | osoft 基础类库的应用程           | 」<br>『序的项目                                                                                                                                                                                                                              |                                                                                                  |                                                                                                               |           |
| 名称(N):                                                                    | MultiModelDemo           |                                                                                                                                                                                                                                         |                                                                                                  |                                                                                                               |           |
| 位置(L):                                                                    | J:\CKVISION\SDK\C        | KVision SDK 5.3.0.1\Samples                                                                                                                                                                                                             |                                                                                                  | ~                                                                                                             | 浏览(B)     |
| 解决方案名称(M):                                                                | MultiModelDemo           |                                                                                                                                                                                                                                         | 创建解决方案的目录(I)                                                                                     | ))                                                                                                            |           |
|                                                                           |                          |                                                                                                                                                                                                                                         |                                                                                                  | 确定                                                                                                            | 取消        |
| MFC 应用程序向                                                                 | 回导 - MultiModel<br>应用程序类 | Demo<br>注型                                                                                                                                                                                                                              |                                                                                                  | ?                                                                                                             | ×         |
| 概述<br>应用程序类型<br>复合文档程序<br>支档模板专<br>相户界面功能<br>高级功能<br>生成的类                 | <u>)</u><br>持<br>行<br>等  | 应用程序类型:<br>● 单个文档( <u>s</u> )<br>● 多个文档( <u>m</u> )<br>● 适项卡式文档( <u>b</u> )<br>● 基于对话框( <u>n</u> )<br>● 使用 HTML 对话框(<br>● 多个顶级文档( <u>T</u> )<br>② 文档/视图结构支持( <u>y</u> )<br>资源语言( <u>L</u> ):<br>中文(简体,中国)<br>☑ 使用 Unicode 库( <u>m</u> ) | 项目类型<br>● MFC<br>● Wind<br>● Visu<br>0 Offi<br>初觉样式<br>Windows<br>■ 启用<br>MFC 的使<br>● 在執<br>● 在静 | :<br>标准(点)<br>lows 资源管理器(X<br>al Studio(①)<br>oe(乎)<br>和颜色(乎):<br>本机/默认<br>视觉样式切换(空)<br>用:<br>享 DIL 中使用 NFC(至 | )<br>c()) |
|                                                                           |                          | 〈 上一步                                                                                                                                                                                                                                   | 下一步〉                                                                                             | 完成                                                                                                            | 取消        |



# 项目属性

| 199 (0)                 |             |                 |                     | Total and  |                                           |                     |
|-------------------------|-------------|-----------------|---------------------|------------|-------------------------------------------|---------------------|
| ;宣(C);                  | Release     | ~               | 千台(P):              | 活动(Win32)  | ~                                         | 配直百理請(O)            |
| 通用                      | 属性          | □ 常規            |                     |            |                                           |                     |
| 配置                      | 属性          | 輸出              | 目录                  |            | \$(SolutionDir)\$(Configuration           | Name)               |
| 2                       | 常规          | 中间              | 目录                  |            | \$(ConfigurationName)                     |                     |
| ij                      | 周试          | 清除              | 时要删除的排              | 扩展名        | *.obj;*.ilk;*.tlb;*.tli;*.tlh;*.tmp;*.rsp | ;*.pgc;*.pgd;*.meta |
| C                       | C/C++       | 生成              | 日志文件                |            | \$(IntDir)\BuildLog.htm                   |                     |
| ŧ                       | 链接器<br>清单工具 | 继承              | 的项目属性制              | 表          |                                           |                     |
| 3                       |             | 启用              | 托管增量生质              | 戓          | 是                                         |                     |
| ///→<br>资源<br>XMI 文档生成器 | □ 项目默;      | 默认值             |                     |            |                                           |                     |
|                         | 8年成器 配置类型   |                 |                     | 应用程序(.exe) |                                           |                     |
| 25                      | XIVIL 义恒主成語 | MFC             | 的使用                 |            | 在静态库中使用 MFC                               | ~                   |
| U<br>A                  |             | ATL             | 的使用                 |            | 不使用 ATL                                   |                     |
| -                       |             | 字符              | 集                   |            | 使用 Unicode 字符集                            |                     |
| F                       | 日定义生成少操     | 生成步骤 公共语<br>全程序 | 共语言运行时支持 无公共语言运行时支持 |            |                                           |                     |
|                         |             |                 | 序优化                 |            | 使用链接时间代码生成                                |                     |
|                         | MFC         | 使用              |                     |            |                                           |                     |

# 添加当前 CKVISION 开发功能对应的.h 与 Lib 文件。

选择到解决方案管理器->选择到当前的项目,展开列表,找到 Header Files->StdAfx.h 双 击打开文件,然后添加:

```
#include "..\\..\Include\\CKGDI.h"
#include "..\\..\Include\\CKBase.h"
#include "..\\..\Include\\CKLocate.h"
```

# #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKLocate.lib")
```

#else

```
#pragmacomment(lib, "..\\..\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\Lib\\CKLocate.lib")
#endif
```

usingnamespaceCKVision; // CKVISION 命名空间



在程序入口处增加 InitLibrary 函数,用于初始化 CKVision 库,只有调用初始函数:

CKVision::InitLibrary(); // 初始化CKVision库

初始化之后才能正常其它图像处理的功能。

在程序退出终止处增加 ExitLibrary 函数,用于释放 CKVision 库:

CKVision::ExitLibrary(); // 退出 CKVision 库 名称 BarcodeDemo BlobToolDemo CalibrationDemo CaliperDemo ColorMatchDemo ColorThresholdDemo ContourDemo DataMatrixDemo EdgeToolDemo FitCircleDemo FitLineDemo HistogramDemo ImageDemo ImageWarpDemo ImgTransDemo InspectDemo ModelDemo MultiModelDemo NCMatchDemo QRCodeDemo ReadOcrDemo SearchDemo AllDemos.ncb AllDemos.sln AllDemos.suo

以 vs 2008 以上版本打开 AllDemos.sln 加载功能实例文件。



#### 深圳市创科自动化控制技术有限公司

打开工程文件后,可以选择类视图->选择当前需要查看的项目,右键鼠标->弹出菜单设置当前启动项目。

|                | 1999   | 生成(U)             |   |
|----------------|--------|-------------------|---|
| 奕倪图            | _      | ●新生成(F)           |   |
| 🚰   🗢 🔿   🛅 ·  |        | 主机土加(L)           |   |
| <搜索>           |        | 清埋(N)             |   |
| T Parcodo Don  |        | 仅用于项目(J)          | • |
|                |        | 按配置优化(P)          | • |
|                |        | T石円/土井石(C)        |   |
| CalibrationD   |        | 坝日舣,颗坝(5)         |   |
|                |        | 项目生成顺序(I)         |   |
|                |        | 自定义生成规则(B)        |   |
| Color I hresh  |        | 工具生成顺序(L)         |   |
| ContourDem     |        |                   |   |
| DataMatrixD    |        | 添加                | • |
| EdgeToolDe     |        | 引用(F)             |   |
| FitCircleDem   |        | 添加 Web 引用(E)      |   |
| E FitLineDemo  |        | 沿为户动项目(A)         |   |
| HistogramD     |        |                   |   |
| 🗄 👔 ImageDemo  |        | 调试(G)             | • |
| 🗄 🚰 ImageWarpl |        | 保存 SearchDemo (S) |   |
| 🗄 🚰 ImgTransDe | ssaren | 按字母顺序排序(S)        |   |
| InspectDemo    |        |                   |   |
| 🗄 📅 ModelDemo  | ~      | 按对象类型排序(1)        |   |
| NCMatchDer     |        | 按对象访问排序(E)        |   |
| 🕀 📅 QRCodeDen  |        | 按对象类型分组(U)        |   |
| 🗄 📅 ReadOcrDer | Ph.    | <b>犀</b> 性(R)     |   |
| 🗄 📷 SearchDeme | -123   | /mai (1 ()        |   |

8.2)

->项目属性->配置属性->常规->MFC 的使用

->在静态库中使用 MFC



# 深圳市创科自动化控制技术有限公司

| 米加图            |    | 生成(U)             | - 1 |
|----------------|----|-------------------|-----|
|                |    | 重新生成(E)           |     |
|                |    | 清理(N)             |     |
| <搜索>           |    | 仅用于项目(J)          |     |
| 🗄 📅 Barcodel   |    | 按配置优化(P)          | -   |
| 🗄 🚰 BlobToo    |    |                   | -   |
| 🕀 📅 Calibratio |    | 项目依赖项(S)          |     |
| 🗄 🚰 CaliperD   |    | 项目生成顺序(I)         |     |
| 🗄 🚰 ColorMa    |    | 自定义生成规则(B)        |     |
| 🕀 🚰 ColorThr   |    | 工具生成顺序(L)         |     |
| Contourl       |    |                   | 7   |
| ⊕ 🚰 DataMat    |    |                   | _   |
| EdgeToc        |    | 与I用(F)            |     |
|                |    | 添加 Web 引用(E)      |     |
| FitLineDe      |    | 设为启动项目(A)         |     |
| Histogra       |    | 调试(G)             |     |
| ImageDe        | -  |                   | -   |
| 🗄 🚰 ImageWi    |    | 保存 SearchDemo (S) | _   |
| ImgTran        |    | 按字母顺序排序(S)        |     |
| 🗄 🚰 InspectD   |    | 按对象举型排序(T)        |     |
| 🕀 🚰 ModelDe    |    |                   | - 1 |
| 🗄 📅 NCMatch    |    | 按刘家功问俳序(E)        | - 1 |
| De To QRCodel  |    | 按对象类型分组(U)        |     |
| 🕀 🚰 ReadOcr    |    | 属性(R)             |     |
| BearchDe       | mo |                   | _   |



|                         | no 温住贝      |                                                                                                              |                     |                                                                                                                                                                                                                                                                             | ? X                                      |
|-------------------------|-------------|--------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 置(C):                   | 活动(Release) | ~ 平台(P):                                                                                                     | 活动(Win32)           | ~                                                                                                                                                                                                                                                                           | 配置管理器(0)                                 |
| 通配置 賞 谐 乙 推 消 论 X 沈 性 目 |             | 日 常规<br>输出目录<br>中间目录<br>清除时要删除的<br>生成日志文件<br>继承的项目属性非<br>同用影汰值<br>配置类型型<br>MFC的使用<br>存符集<br>公共语言运行时<br>全程序优化 | 扩展名<br>表<br>或<br>支持 | ·\Release         ·\Release         *.obj;*.ilk;*.tlb;*.tli;*.tlh;*.tmp;*.rsg         \$(IntDir)\BuildLog.htm         \$(VCInstallDir)VCProjectDefaults         是         应用程序(.exe)         在静态库中使用 MFC         不使用 ATL         使用多字节字符集         无公共语言运行时支持         无全程序优化 | o;*.pgc;*.pgd;*.meta<br>:\UpgradeFromVC6 |

8.3)->项目属性->查看编译生成输出的文件路径。

连接器->输出文件.

| 置(C):   | 活动(Release)  | ~    | 平台(P):     | 活动(Win32)      | ~                    | · 配置管理器(O) |  |
|---------|--------------|------|------------|----------------|----------------------|------------|--|
| 通用      | 属性           | ∧ 輸出 | 文件         | 337            | \\Bin\SearchDemo.exe |            |  |
| / 配置    | 置属性          | 显示   | 进度         |                | 未设置                  |            |  |
|         | 常规           | 版本   |            |                |                      |            |  |
|         | 调试           | 启用   | 増量链接       |                | 否(/INCREMENTAL:NO)   |            |  |
| > C/C++ |              | 取消   | 取消显示启动版权标志 |                | 是(/NOLOGO)           |            |  |
| ~       | 链接器          | 忽略   | 导入库        |                | 否                    |            |  |
|         | 常规           | 注册   | 注册输出       |                | 否                    |            |  |
|         | 输入           |      | 每个用户的重定向   |                | 否                    |            |  |
|         |              |      | 库目录        |                |                      |            |  |
|         | 调试           | 链接   | 库依赖项       |                | 是                    |            |  |
|         | ~ 法          | 使用   | 库依赖项输入     | λ              | 否                    |            |  |
|         | 2557G        | 使用   | UNICODE    | 响应文件           | 是                    |            |  |
|         |              |      |            |                |                      |            |  |
|         | 設入町」IDL      |      |            |                |                      |            |  |
|         |              |      |            |                |                      |            |  |
| 5       | 中文行          |      |            |                |                      |            |  |
| >       | <b>清甲</b> 上具 |      |            |                |                      |            |  |
| 2       |              | -    |            |                |                      |            |  |
| >       | XML 又档生成器    | 输出文  | 件          |                |                      |            |  |
| >       | 浏覧信息         | 重写默  | 认的输出文件     | ‡名。 (/OUT:[fil | e])                  |            |  |
| >       | 生成爭件         | ~    |            |                |                      |            |  |



### 8.4)

添加当前 CKVISION 开发功能对应的.h 与 Lib 文件。

选择到解决方案管理器->选择到当前的项目,展开列表,找到 Header Files->StdAfx.h 双 击打开文件,然后添加:

#include "..\\..\Include\\CKGDI.h"
#include "..\\..\Include\\CKBase.h"
#include "..\\..\Include\\CKLocate.h"

### #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKLocate.lib")
e
```

#### #else

```
#pragmacomment(lib, "..\\..\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\Lib\\CKLocate.lib")
#endif
```

usingnamespaceCKVision; // CKVISION 命名空间

```
解决方案资源管理器 - 解决方案'AllDemo... ▼ 및 X
                                                                                                                                                     StdAfx.h
   🗟 | 🗗 | 🗉 🍇
                                                                                                                                                   StdAfx.h
                                                                                                                                                                                                                               ✓ ↓ j:\CKVISION\SDK\CKVision SDK
   E ContourDemo
                                                                                                                                                   (全局范围)
   🗄 📲 DataMatrixDemo
   🗄 \overline 🔠 EdgeToolDemo
                                                                                                                                                      #if _MSC_VER > 1000
   🗄 📅 FitCircleDemo
                                                                                                                                                          #pragma once
#endif // _MSC_VER > 1000
   😥 📅 FitLineDemo
                                                                                                                                                         #define VC_EXTRALEAN
                                                                                                                                                                                                                                    // Exclude rarely-used stuff from Wind
   🗄 📅 HistogramDemo
                                                                                                                                                        #include (afreein h) // MPC core and standard components
#include (afreein h) // MPC extensions
#include (afredin h) // MPC extension classes
#include (afredin h) // MPC support for Internet Explorer 4
#include (afreen h) // MPC support for Windows Common Cont
#endif // _AFX_NO_AFXCDM_SUPPORT
   🗄 📅 ImageDemo
   🗄 📅 ImageWarpDemo
   🗄 📅 ImgTransDemo
   🗈 \overline InspectDemo
   🗄 📅 ModelDemo
   - MCMatchDemo
                                                                                                                                                         #include "...\\...\\Include\\CKGDI.h"
#include "...\\..\\Include\\CKBase.h"
#include "...\\..\\Include\\CKLocate.h"
   🗄 📲 QRCodeDemo
   🗄 📲 ReadOcrDemo
                                                                                                                                                      #ifdef WIN64
   🖃 📷 SearchDemo
                                                                                                                                                                     det #1864
#pragma comment(lib, "..\\.\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\.\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\.\Lib_x64\\CKLocate.lib")
                 - 🗁 Header Files
                              ModelDlg.h
                                                                                                                                                      = #else
                                                                                                                                                         ##15e
#pragma comment(lib, "..\\..\Lib\\CKBase lib")
#pragma comment(lib, "..\\..\Lib\\CKBUL.lib")
#pragma comment(lib, "..\\..\Lib\\CKLocate.lib")
#endif
                              h Resource.h
                             b SearchDemo.h
                             h SearchDemoDlg.h
                            h StdAfx.h
           Resource Files
                                                                                                                                                          using namespace CKVision;
                                                                                                                                                       White According to the second 
                             SearchDemo.ico
                              SearchDemo.rc2
             🗄 🗁 Source Files
                             🕶 ModelDlg.cpp
                                                                                                                                                     |#pragma comment(linker, /wanifestdependency:\"type="win32' name='#
|#mragma comment(linker,"/manifestdependency:\"type="win32' name='#
                              🐏 SearchDemo.cpp
                                                                                                                                                      = #pragma
                             SearchDemo.rc
                                                                                                                                                                           a comment(linker, "/manifestdependency:\"type='win32' name='W
                              SearchDemoDlg.cpp
                                                                                                                                                          #pragma c
#endif
//#endif
                              StdAfx.cpp
                     ReadMe.txt
                                                                                                                                                       //{{AFX INSERT LOCATION}}}
```



#### 8.5)

在程序入口处增加 InitLibrary 函数,用于初始化 CKVision 库,只有调用初始函数:

CKVision::InitLibrary(); // 初始化CKVision库

之后才能正常其它图像处理的功能。

在程序退出终止处增加 ExitLibrary 函数,用于释放 CKVision 库: CKVision::ExitLibrary(); // 退出 CKVision 库





BOOL CQRCodeDemoApp::InitInstance() ↓ {



注:详细代码请打开对应的...Demo 功能实例。

# BarcodeDemo 一维码检测

```
1.) 在 StdAfx.h 的头文件中添加读取条码相关的文件链接。
    //.h 头文件
#include "..\\..\\Include\\CKGDI.h"
#include "..\\..\\Include\\CKBase.h"
#include "..\\..\\Include\\CKReader.h"
//.lib 文件
#ifdef_WIN64
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKReader.lib")
#pragma comment(lib, "..\\..\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\Lib\\CKBase.lib")
```

usingnamespaceCKVision;



| 解决方案资源管理器 - BarcodeDemo ▼ 早           | X CKReader, StdAfx.h BarcodeDemo.rcO_DIALOG - Dialog                                                                                                                                  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 陆 📴 Z                                 | → CKGDI.h  →  →  h j:\CKVISION\SDK\CKVision !                                                                                                                                         |
| 😡 解决方案'AllDemos' (21 个项目)             | (全局范围)                                                                                                                                                                                |
| 😑 📅 BarcodeDemo                       |                                                                                                                                                                                       |
| 🖨 🗁 Header Files                      | If a staarx h : include file for standard system include files,<br>// or project specific include files that are used frequently                                                      |
| - h BarcodeDemo.h                     | // are changed infrequently                                                                                                                                                           |
| - 🖻 BarcodeDemoDlg.h                  |                                                                                                                                                                                       |
| - 🖻 Resource.h                        | #if !defined(AFX_STDAFX_H_12E0F1E5_F928_484D_9874_5231C877724<br>ed.fi., AFX_STDAFX_H_12E0F1E5_F928_484D_9874_5231C877724<br>ed.fi., AFX_STDAFX_H_12E0F1E5_F928_484D_9874_5231C877724 |
| 🔤 🛅 StdAfx.h                          | Wdernie Wikjstowikjs_izzorizojrozojrozojrozojrozoicornizoo_zi                                                                                                                         |
| 🐵 🗀 Resource Files                    | #if _MSC_VER > 1000                                                                                                                                                                   |
| 🖶 📴 Source Files                      | #endif // _MSC_VER > 1000                                                                                                                                                             |
| - 🔤 BarcodeDemo.cpp                   | #define W_ BYTPALBAN // Realade wavelenned shaff from                                                                                                                                 |
| 🛃 BarcodeDemo.rc                      | Wdefine Vo_Exhibitions // Exclude Fallery died staff from                                                                                                                             |
| 🥶 BarcodeDemoDlg.cpp                  | #include (afravin.h) // MFC core and standard componen:<br>#include (afravit.h) // MFC avianzions                                                                                     |
| - 🚰 StdAfx.cpp                        | #include (afxdisp.h) // MFC Automation classes                                                                                                                                        |
| ReadMe.txt                            | <pre>#include (afxdtctl h) // MFC support for Internet Explos</pre>                                                                                                                   |
| 🕢 🎁 BlobToolDemo                      | <pre>#include <afxcmn h=""> // MFC support for Windows Common</afxcmn></pre>                                                                                                          |
| CalibrationDemo                       | #endif // _AFX_NO_AFXCMN_SUPPORT                                                                                                                                                      |
| 💼 🔞 CaliperDemo                       |                                                                                                                                                                                       |
| ColorMatchDemo                        | <pre>#include ~</pre>                                                                                                                                                                 |
| ColorThresholdDemo                    | #include " \\ \\Include \\CKReader. h"                                                                                                                                                |
| ContourDemo                           | stifdef WIN64                                                                                                                                                                         |
| DataMatrixDemo                        | <pre>#pragma comment(lib, "\\\\Lib_x64\\CKGDI.lib")</pre>                                                                                                                             |
| EdgeToolDemo                          | <pre>#pragma comment(lib,\\\\Lib_x64\\CKBase.lib ) +#pragma comment(lib, "\\\\Lib x64\\CKReader.lib")</pre>                                                                           |
| 🗑 🎁 FitCircleDemo                     | e#else                                                                                                                                                                                |
| FitLineDemo                           | <pre>#pragma comment(lib,</pre>                                                                                                                                                       |
| HistogramDemo                         | <pre>#pragma comment(lib, "\\\\Lib\\CKReader.lib")</pre>                                                                                                                              |
| ImageDemo                             | *enair                                                                                                                                                                                |
| ImageWarpDemo                         | using namespace CKVision;                                                                                                                                                             |
| - ImgTransDemo                        | //#ifdef_UNICODE                                                                                                                                                                      |
| InspectDemo                           | <pre>b#if defined _M_IX86</pre>                                                                                                                                                       |
| 🗉 📷 ModelDemo                         | stelif defined _M_IA64                                                                                                                                                                |
| MCMatchDemo                           | +#pragma comment(Linker, "/manifestdependency:\"type= win32" nar                                                                                                                      |
| 🕢 📅 QRCodeDemo                        | #pragma comment(linker, "/manifestdependency:\"type='win32' nar                                                                                                                       |
| 🕢 🌆 ReadOcrDemo                       | <pre>##ise +#pragma comment(linker. "/manifestdependency:\"type='win32' nag</pre>                                                                                                     |
| 🖅 🛅 SearchDemo                        | #endif                                                                                                                                                                                |
| Non to a manager and we have a second | //#endit                                                                                                                                                                              |

# //初始化 CKVision 库





| 2.) | 在资源视图 | Dialog 中添加相应的界面操作。 | , |
|-----|-------|--------------------|---|
|-----|-------|--------------------|---|

| 资源视图 - BarcodeDemo ▼ 平 X | CKReader.h StdAfx.h BarcodeDemo.rcO_DIALOG - Dialog BarcodeDemoDlg.h |                           |
|--------------------------|----------------------------------------------------------------------|---------------------------|
| 🖶 🚰 BarcodeDemo          |                                                                      |                           |
| 🚊 🛅 BarcodeDemo.rc       | Line handered en der             |                           |
| 🖨 🦢 Dialog               | E BarcodeDemo                                                        | 83                        |
| - IDD_ABOUTBOX           |                                                                      |                           |
| IDD_BARCODEDEMO_DIALOG   |                                                                      | 1¥1F                      |
| 🗉 📜 Icon                 | - 确定                                                                 |                           |
| 🗄 🛅 String Table         | 取消                                                                   | 打开图像                      |
| 🖲 🫅 Version              |                                                                      |                           |
| BlobToolDemo             |                                                                      | ROI                       |
| CalibrationDemo          |                                                                      |                           |
| CaliperDemo              |                                                                      | <b>*</b> 急301             |
| ColorMatchDemo           |                                                                      |                           |
| ColorThresholdDemo       |                                                                      |                           |
| 🗄 쫼 ContourDemo          |                                                                      | 参数                        |
| 🔋 🚰 DataMatrixDemo       |                                                                      | 1 martine                 |
| 🖶 📴 EdgeToolDemo         |                                                                      | 读取余码英                     |
| 🖶 📴 FitCircleDemo        |                                                                      |                           |
| 🗄 🚰 FitLineDemo          |                                                                      |                           |
| 🖶 🚰 HistogramDemo        |                                                                      |                           |
| 🖶 📴 ImageDemo            |                                                                      |                           |
| 🗑 📴 ImageWarpDemo        |                                                                      |                           |
| 🗄 📴 ImgTransDemo         |                                                                      |                           |
| 🕮 🎦 InspectDemo          |                                                                      |                           |
| 🕮 🊰 ModelDemo            |                                                                      | 滤波器半宽 示例编辑框 🛟             |
|                          |                                                                      | an ano an an an And an An |
| 🐵 🚰 QRCodeDemo           |                                                                      | 特長順加盟 不均均用料性              |
| 🕫 📴 ReadOcrDemo          |                                                                      |                           |
| 🗄 📴 SearchDemo           |                                                                      |                           |
|                          |                                                                      |                           |
|                          | :                                                                    | 信息                        |
|                          |                                                                      |                           |
|                          | 定位梯度 示例编辑框 最大条宽度 示例编辑框 □水平 □垂直 □45度 □135度                            |                           |
|                          |                                                                      | Static                    |
|                          |                                                                      |                           |
|                          |                                                                      |                           |
|                          |                                                                      |                           |

3.) 在对话框窗口的 .h 头文件中定义相应的图像处理功能:

|    | CPrImage     | m_Image; // 基础图像类<br>m_FindBC;// 条码定位 |                                  |
|----|--------------|---------------------------------------|----------------------------------|
|    | CFindBarcode |                                       |                                  |
|    | CReadBarcode | m_Barcode;                            | // 读取条码                          |
|    | CGdiRect     | m_Rect;                               | // 矩形框显示                         |
|    | COverlay     | m_Overlay;                            | // 图像显示表面, 前显示的动态图形,主要用于ROI 显示。  |
| 显示 | COverlay     | m_Results;                            | // 图像显示表面, 前显示的静态图形,主要用于检测结果生成图形 |
|    | CGdiView     | m_GdiView;                            | // 图形视图窗口                        |

4.) 在对话框窗口的.cpp 实现文件中添加相应的功能实现。



### 深圳市创科自动化控制技术有限公司



// 执行条码读取

```
voidCBarcodeDemoDlg::OnExecute()
```

```
{
```

 $/\!/$  TODO: Add your control notification handler code here

```
m_Barcode.Release();
Overlay_DeleteAll(m_Results);
```

#### // 一维码类型

```
intnBarcodeType = 0;
```

```
if( m_List1.GetSel(0) )
    nBarcodeType |= BARCODE_UPC_A;
if( m_List1.GetSel(1) )
```

nBarcodeType |= BARCODE\_UPC\_E;

if( m\_List1.GetSel(2) )

nBarcodeType |= BARCODE\_EAN\_8;

if( m\_List1.GetSel(3) )

nBarcodeType |= BARCODE\_EAN\_13;

```
if( m_List1.GetSel(4) )
    nBarcodeType |= BARCODE_CODE_39;
```

```
if( m_List1.GetSel(5) )
    nBarcodeType |= BARCODE_CODE_93;
```



```
if( m_List1.GetSel(6) )
    nBarcodeType |= BARCODE_CODE_128;
```

```
if( m_List1.GetSel(7) )
    nBarcodeType |= BARCODE_INTERLEAVED_2_5;
```

m\_Barcode.SetReadType( nBarcodeType );

- m\_Barcode.SetFilterHalf(GetDlgItemInt(IDC\_EDIT1));
- m\_Barcode.SetThreshold( GetDlgItemInt(IDC\_EDIT2) );

intfx = 0;

- if( IsDlgButtonChecked(IDC\_CHECK1) )  $\label{eq:star} \begin{array}{l} f_x \mid = 0 \\ x \\ \end{array}$
- if( IsDlgButtonChecked(IDC\_CHECK2) )
   fx = 0x02;
- if( IsDlgButtonChecked(IDC\_CHECK3) )  $f_x = 0x04;$
- if( IsDlgButtonChecked(IDC\_CHECK4) )  $f_{\rm X} = 0x08;$
- m\_FindBC.SetMaxCount( 20 );
- $m\_FindBC.\,SetOrientation( fx );$

 $\mbox{m\_FindBC.SetThreshold(GetDlgItemInt(IDC\_EDIT4)});$ 

m\_FindBC.SetMaxSpace(GetDlgItemInt(IDC\_EDIT3));

#### // 开始计算时间

BeginTime();

```
// 执行条码定位
if( m_Rect.GetVisible() ) {
    m_FindBC.Execute( m_Image, m_Rect );
} else {
    m_FindBC.Execute( m_Image, MaxROI );
}
ROTRECTrc, *pRect;
for( inti=0; i<m_FindBC.GetNumResults(); i++ )
    Duct = m_FindBC.GetNumResults(); i++ )</pre>
```

```
pRect = m_FindBC.GetCodeBorder(i);
rc.center = pRect->center;
rc.angle = pRect->angle;
rc.width = pRect->width+10;
```

{



```
rc.height = min(max(pRect->height-50, 10), 80);
    // 指定位置读取条码
    if( m Barcode.Execute( m Image, rc ) ) {
         CGdiRotBox* p1 = newCGdiRotBox(*pRect);
         if( p1!=NULL ) {
              p1 \rightarrow 0 ff set(0.5, 0.5);
              p1->SetPenWidth(2);
              if( m_Barcode.GetCodeLen()>0 )
                  p1 \rightarrow SetPenColor(RGB(0, 255, 0));
              else
                  p1->SetPenColor( RGB(255,0,0) );
              m Results. AddItem(p1);// 添加显示图形到画面上显示
         }
         break:
    }
}
// 结束计算时间周期
EndTime();
SetDlgItemText( IDC_CODE_TEXT, m_Barcode.GetCodeText() );
m GdiView.Redraw();
                    // 视图刷新显示
```

# BlobToolDemo 斑点分析

}

1.)在 StdAfx.h 的头文件中添加读取条码相关的文件链接。

```
#include "..\\..\\Include\\CKGDI.h"
#include "..\\..\\Include\\CKBase.h"
#include "..\\..\\Include\\CKBlobAnalyzer.h"
```

```
#ifdef _WIN64
#pragma comment(lib, "..\\..\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKBlob.lib")
#else
#pragma comment(lib, "..\\..\Lib\\CKGDI.lib")
#pragma comment(lib, "..\\..\Lib\\CKBase.lib")
```



#pragma comment(lib, "..\\..\Lib\\CKBlob.lib")
#endif

#### using namespace CKVision;

//在程式入口和退出的地方增加初始化和释放 CKVISION 库。 BOOLCBlobToolDemoApp::InitInstance()

CKVision::InitLibrary(); // 初始化 CKVision 库. //.....

CKVision::ExitLibrary(); // 退出 CKVision 库



2.)在资源视图 Dialog 中添加相应的界面操作。


| 资源视图 - BlobToolDemo 🔹 부 🗙 | BlobToolDemo.rcO_DIALOG - Dialog BlobToolDer |
|---------------------------|----------------------------------------------|
| 🗉 🌇 BarcodeDemo           |                                              |
| 🖶 🚰 BlobToolDemo          |                                              |
| BlobToolDemo.rc           | Blob1oolDemo                                 |
| 🖮 🛅 Bitmap                | Tab 1 Tab 2 Tab 3 Tab 4 1 1                  |
| 🖨 🛅 Dialog                |                                              |
|                           |                                              |
|                           |                                              |
| -B IDD_PARAM1_DLG         |                                              |
| IDD_PARAM2_DLG            |                                              |
| 🗈 🫅 Icon                  |                                              |
| 🗊 🧰 String Table          |                                              |
| 🗄 🧰 Version               |                                              |
| 🗈 📷 CalibrationDemo       |                                              |
| 🗈 🌇 CaliperDemo           |                                              |
| 🗄 🚰 ColorMatchDemo        |                                              |
| 🗈 🚰 ColorThresholdDemo    |                                              |
| 🗄 🚰 ContourDemo           |                                              |
| 🗄 🚰 DataMatrixDemo        |                                              |
| 🗈 🚰 EdgeToolDemo          |                                              |
| 🗉 🚰 FitCircleDemo         |                                              |
| 🗄 🚰 FitLineDemo           |                                              |
| 🗉 🚰 HistogramDemo         |                                              |
| 🗄 🚰 ImageDemo             |                                              |
| 🗄 🌇 ImageWarpDemo         |                                              |
| 🗉 🚰 ImgTransDemo          |                                              |
| 🗈 🚰 InspectDemo           |                                              |
| 🗉 🚰 ModelDemo             |                                              |
| 🗄 🚰 NCMatchDemo           |                                              |
| 🗄 🚰 QRCodeDemo            |                                              |
| 🗄 🚰 ReadOcrDemo           | - · · · · · · · · · · · · · · · · · · ·      |
| 🗄 🚰 SearchDemo            | 打开图像 第首色                                     |
|                           |                                              |
|                           | ● ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・      |
|                           |                                              |
|                           |                                              |

# 在对话框窗口的 .h 头文件中定义相应的图像处理功能:

voidFilter( intnMeasure, doubledMin, doubledMax, BOOLbInvert );// 过滤 voidSort( intnMeasure, intnOrder );// 排序

voidThresholdImage( INTvalue );// 设置二值化阈值显示 voidThresholdDraw( BOOLdraw );// 显示二值化图像

#### // 数据结果插入到列表中显示

```
voidInsertBase( int&nColNum );
voidInsertBound( int&nColNum );
voidInsertMoment( int&nColNum );
voidInsertConvex( int&nColNum );
voidInsertMinBox( int&nColNum );
```

#### // 基础图像类

CPrImage m\_Image; CPrImage m\_TImage;

// 掩摸图 CMask m\_Label; // ROI 检测区域



CGdiRect m\_Rect; // Blob 分析工具类 CBlobAnalyzer m\_blobTool;

#### // 图像显示表面,

| COverlay | m_Overlay; | //前显示的动态图形,主要用于ROI | 显示。 |
|----------|------------|--------------------|-----|
| COverlay | m_Results; |                    |     |
| CGdiView | m_GdiView; | // 图形视图窗口          |     |

# // 参数设置

| CParam1D1g | m_Param1D1g; |
|------------|--------------|
| CParam2D1g | m_Param2D1g; |

# 在对话框窗口的.cpp 实现文件中添加相应的功能实现。 // 对话框窗口初始化函数中 BOOLCBlobToolDemoDlg::OnInitDialog()

#### {

```
// TODO: Add extra initialization here
CRectdrc;
m_Tab1.GetWindowRect( &drc );
ScreenToClient( &drc );
drc.DeflateRect( 10, 25, 10, 10 );
m_Tab1.InsertItem( 0, "参数设置" );
m_Tabl.InsertItem(1, "其它功能");
m_Tab1.SetCurSel( 0 );
// 创建参数设置窗口
m_Param1Dlg.Create( IDD_PARAM1_DLG, this );
m_Param1Dlg.ShowWindow(SW_SHOW);
m_Param1Dlg.MoveWindow( &drc );
m_Param2Dlg.Create( IDD_PARAM2_DLG, this );
m_Param2Dlg.MoveWindow( &drc );
m_List1.SetExtendedStyle( 0x20 );
RECTrect;
GetDlgItem(IDC_GDI_RECT)->GetWindowRect( &rect );
ScreenToClient( &rect );
// 窗口图形显示视图
```



```
m_GdiView.Create( m_hWnd, rect );
    m GdiView.SetBackColor( RGB(0,0,64) );
    m GdiView. SetDisplayImage(&m Image);// 显示当前的图像
    m_GdiView.SetActiveOverlay(&m_Overlay);// ROI 显示
    m_GdiView.SetStaticOverlay(&m_Results);// 结果图形显示
    m Overlay. AddItem(&m Rect);//将需要显示的图形添加到覆盖图容器中。
    m Rect.left
                      = 100;
    m_Rect.top
                      = 100;
    m_Rect.right = 500;
    m Rect. bottom = 400;
    m_Rect.SetPenColor(RGB(255,0,0));
    m Rect.SetVisible( false );
    m_Displ.SetCheck(1);
}
// 在执行按钮中
voidCBlobToolDemoDlg::OnExecute()
{
    // TODO: Add your control notification handler code here
    m blobTool.SetBlobType( m Param1Dlg.m Combo1.GetCurSel() );
    m_blobTool.SetConnexity( m_Param1Dlg.m_Combo2.GetCurSel() );
    m_blobTool.SetThreshold( m_Param1Dlg.GetDlgItemInt( IDC_EDIT1 ) );
    m_blobTool.SetLimitArea( m_Param1Dlg.GetDlgItemInt( IDC_EDIT2 ) );
    m_blobTool.SetFeatures( m_Param1Dlg.GetFeature() );
    BeginTime();
    //直方图是否自动分割二值化阈值
    CHistogramhist;
    hist.SetAnalyse(Analyse_Threshold);// 设置分析分割阈值参数
    if( m_Rect.GetVisible() ) {
         if(m_Param1Dlg.m_bAutom.GetCheck()) {// 自动计算二值化阈值
             hist.Execute( m_Image, m_Rect );
             m_blobTool.SetThreshold( hist.GetThreshold() );
             m_Param1Dlg.UpdateThreshold( hist.GetThreshold() );
        }
        m_blobTool.Execute(m_Image, m_Rect);// 执行Blob 分析
```



```
} else {
    if( m_Param1Dlg.m_bAutom.GetCheck() ) {
        hist.Execute( m_Image, MaxROI );
        m_blobTool.SetThreshold( hist.GetThreshold() );
        m_Param1Dlg.UpdateThreshold( hist.GetThreshold() );
    }
    m_blobTool.Execute( m_Image, MaxROI );// 执行Blob 分析
}
EndTime();
```

```
intnColNum=0;
m_List1.DeleteAllItems();
Overlay_DeleteAll(m_Results);
while(m_List1.DeleteColumn(0));
```

#### // 添加基本特征

InsertBase( nColNum );

#### // 添加外接矩形特征

#### // 添加力主轴特征

#### // 添加凸包相关特征

#### // 添加最小外框特征

#### m\_GdiView.Redraw();// 刷新视图

}



# CalibrationDemo 标定校准

注意: CKVISION SDK 添加 .h 与 lib 文件、初始方法步骤与以上功能相同。

在 StdAfx.h 的头文件中添加 CKVISION 相关定义

#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKDotMatrix.h"
#include"..\\..\\Include\\CKCalibration.h"

# #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKGase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKCalibration.lib")
#else
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKCalibration.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKCalibration.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKCalibration.lib")
```

usingnamespaceCKVision;

// CalibrationDemo.cpp : Defines the class behaviors for the application. 在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。 B00LCCalibrationDemoApp::InitInstance()

CKVision::InitLibrary(); // 初始化 CKVision 库 // ..... // 退出 CKVision::ExitLibrary(); // 退出 CKVision 库



#### 深圳市创科自动化控制技术有限公司

| 映方案资源管理器・解決… ▼ ↓ 🗙         | CalibrationDemo.cpp StdAfx.h CKCalibration.h CKDotMa                              |
|----------------------------|-----------------------------------------------------------------------------------|
| 1 1 1 2 L                  |                                                                                   |
| 灵 解决方案'AllDemos' (21 个项目)  | CollibrationDomoApp                                                               |
| 🗁 🛅 BarcodeDemo            |                                                                                   |
| 🗁 🚰 BlobToolDemo           | // The one and only CCalibrationDemoApp object                                    |
| - 📅 CalibrationDemo        | CC-TibuttingBurnham Alabami                                                       |
| 🚔 🗁 Header Files           | CCalibrationDemoxpp theApp;                                                       |
| 🖻 CalibrationDemo.h        | //////////////////////////////////////                                            |
| 🖻 CalibrationDemoDlg.h     | // ccaribrationemoxpp initialization                                              |
| h Resource.h               | BOOL CCalibrationDemoApp::InitInstance()                                          |
| 🖻 StdAfx.h                 | AfxEnableControlContainer();                                                      |
| 🖅 🚞 Resource Files         | CKVision::TnitLibrary(): // 初始化CKVision库                                          |
| 🚊 🗁 Source Files           |                                                                                   |
| - 🚰 CalibrationDemo.cpp    | // Standard initialization // If you are not using these features and wish to red |
| 🛃 CalibrationDemo.rc       | // of your final executable, you should remove from t                             |
| - 🔤 CalibrationDemoDlg.cpp | - // the specific initialization routines you do not ne                           |
| 🔤 StdAfx.cpp               | #ifdef _AFXDLL                                                                    |
| ReadMe.txt                 | Enable3dControls(); // Call this when using MP                                    |
| 🗠 🚰 CaliperDemo            | Enable3dControlsStatic(); // Call this when linking                               |
| 🗁 📅 ColorMatchDemo         | #endif                                                                            |
| 🗠 🚰 ColorThresholdDemo     | CCalibrationDemoDlg dlg;                                                          |
| - 📅 ContourDemo            | int nResponse = dlg. DoModal();                                                   |
| 🗁 📴 DataMatrixDemo         | if (nResponse = IDOK)                                                             |
| 🗁 🚰 EdgeToolDemo           | I // TODO: Place code here to handle when the dialog                              |
| - 📅 FitCircleDemo          | - // dismissed with OK                                                            |
| 🗠 🚰 FitLineDemo            | else if (nResponse = IDCANCEL)                                                    |
| 🗁 📴 HistogramDemo          | [ // TODO: Place code here to herdle when the dialog                              |
| - 🚰 ImageDemo              | - // dismissed with Cancel                                                        |
| 🗁 📴 ImageWarpDemo          |                                                                                   |
| - 🚰 ImgTransDemo           | CKVision::ExitLibrary(); // 退出CKVision库                                           |
| 🗁 📴 InspectDemo            | // Since the dialog has been closed, return FALSE so t                            |
| - 🚰 ModelDemo              | // application, rather than start the application's m                             |
| - 🚰 NCMatchDemo            | return FALSE;                                                                     |
| - 📴 QRCodeDemo             |                                                                                   |
| 🗁 📴 ReadOcrDemo            |                                                                                   |
| SearchDemo                 |                                                                                   |

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

```
// CalibrationDemoDlg.h : header file
在对话框窗口的 .h 头文件中定义相应的图像处理功能:
// CCalibrationDemoDlg dialog
   CPvImage
             m_ImageSrc;// 来源图像
   CPvImage
             m_ImageDst;// 校正后的图像
   COverlay
             m_Overlay;// 图像显示表面, 前显示的动态图形, 主要用于ROI 显示。
             m_Results;// 图像显示表面, 前显示的静态图形, 主要用于检测结果生成图形显示。
   COverlay
   CGdiView
             m_GdiView;// 图形显示视图窗口
   CGdiRect
              m_Roi;
                       // 矩形区域
                 m_DotMatrix; //获取圆形矩阵点位置数据
   CDotMatrix
   CCalibration m_Calibration; // 执行标定、图像畸变校正、九点标定。
```

# //.....

// CalibrationDemoDlg.cpp : implementation file



```
在对话框窗口的.cpp 实现文件中添加相应的功能实现。
//CCalibrationDemoDlg message handlers
BOOLCCalibrationDemoDlg::OnInitDialog()
{
        // TODO: Add extra initialization here
    CRectrect;
    GetDlgItem(IDC_VIEW_RECT)->GetWindowRect( &rect );
    ScreenToClient( &rect );
    m GdiView.Create( m hWnd, rect );
                                            // 按自定义的区域创建图形显示视图窗口。
    m_GdiView.SetBackColor( RGB(0,0,64) );
                                             // 设置默认的背景颜色
    m GdiView.SetDisplayImage(&m ImageDst); // 设置当前显示的图像
    m_GdiView.SetActiveOverlay(&m_Overlay); // 设置当前显示的覆盖图ROI 图形显示。
    m_GdiView.SetStaticOverlay(&m_Results); // 设置当前显示的覆盖图结果图形显示。
    m_Overlay.AddItem( &m_Roi );
                                             //将需要显示的图形添加到覆盖图容器中。
}
// 获取图像上的标定点
voidCCalibrationDemoDlg::OnCheckDot()
{
    // TODO: Add your control notification handler code here
    BeginTime();
    m DotMatrix.SetDotType( m Combol.GetCurSel() );
    m_DotMatrix.SetMinArea(GetDlgItemInt(IDC_EDIT1));
    m_DotMatrix.SetMaxArea(GetDlgItemInt(IDC_EDIT2));
    CHistogramhistTool;
    histTool.SetAnalyse( Analyse_Threshold );
    if( m_Roi.GetVisible() ) {
        histTool.Execute( m_ImageSrc, m_Roi );
        m_DotMatrix.SetThreshold( histTool.GetThreshold() );
    if( !m_DotMatrix.Execute( m_ImageSrc, m_Roi ) ) {
            AfxMessageBox(_T("获取标定点失败!"));
        }
    } else {
        histTool.Execute( m_ImageSrc, MaxROI );
```



```
m_DotMatrix.SetThreshold( histTool.GetThreshold() );
         if( !m_DotMatrix.Execute( m_ImageSrc, MaxROI ) ) {
             AfxMessageBox(_T("获取标定点失败!"));
         }
    }
    Overlay_DeleteAll(m_Results);
    DPNT* points = m_DotMatrix.GetDotData();
    for( inti=0; i<m_DotMatrix.GetDotCount(); i++ ) {</pre>
         CGdiPoint* p1 = newCGdiPoint(points[i]);
         if( p1!=NULL ) {
             p1->SetStyle(1);
             p1->SetPenColor(RGB(0, 255, 0));
             m Results.AddItem( p1 );
         }
    }
    EndTime();
    SelectView( 0 );
}
// 执行标定
voidCCalibrationDemoDlg::OnExecute()
{
    // TODO: Add your control notification handler code here
    UpdateData();
    BeginTime();
    m_Calibration.SetActualSpace( m_dUnitSpaceX );
    m_Calibration.SetCalibrationType( m_Combo2.GetCurSel() );
    // 执行标定
    if( !m_Calibration.Execute( m_DotMatrix.GetDotData(), m_DotMatrix.GetDotCount() ) )
    {
         AfxMessageBox( "标定失败!");
         return;
    }
    // 执行多个点标定功能(九点标定)、坐标系变换
```



```
// pointSrc
             来源点,图像上的坐标点
             目标点,实际单位的坐标点
// pointDst
// nCount 点的数量
// bool Execute( const DPNT* pointSrc, const DPNT* pointDst, int nCount );
if ( !m Calibration.CreateLUTable ( m ImageSrc.GetWidth(), m ImageSrc.GetHeight() ) )
{
    AfxMessageBox( "创建图像校正查找表失败!");
    return;
}
EndTime();
CStringtext;
text.Format( _T("%0.9f"), m_Calibration.GetPixelScale() );
SetDlgItemText( IDC_PIXEL_SCALE_X, text );
SelectView( 0 );
```

```
//.....详情请打开实例参考。
```

}

# CaliperDemo 卡尺测量、间距检测

// stdafx.h : include file for standard system include files,or project specific include
// files that are used frequently,butare changed infrequently
在 StdAfx.h 的头文件中添加 CKVISION 相关定义

#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKCaliper.h"

#### #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
```



#### #endif

usingnamespaceCKVision;

```
在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。
// CaliperDemo.cpp : Defines the class behaviors for the
application.BOOLBOOLCCaliperDemoApp::InitInstance()
{
    CKVision::InitLibrary(); // 初始化 CKVision 库
    //...
    //...End
    CKVision::ExitLibrary(); // 退出 CKVision 库
}
```

```
在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。
```

```
在对话框窗口的 .h 头文件中定义相应的图像处理功能:
```

```
// CaliperDemoDlg.h : header file
```

```
// CCaliperDemoDlg dialog
```

|    | CPrImage    | m_Image;// 基础图像                              |
|----|-------------|----------------------------------------------|
|    | CGdiRotBox  | m_Rect;// ROI 检测区域                           |
|    | CCaliper    | m_Caliper;//卡尺测量、间距检测、                       |
|    | COverlay    | m_Overlay;// 图像上层显示表面, 前显示的动态图形,主要用于ROI 显示。  |
|    | COverlay    | m_Results;// 图像上层显示表面, 前显示的静态图形,主要用于检测结果生成图形 |
| 显示 | 0           |                                              |
|    | CGdiView    | m_GdiView;// 图形显示视图窗口                        |
|    | CcdiProfile | m Profile: // 坍影曲线边缘位置显示                     |

```
CGdiProfilem_Profile;// 投影曲线边缘位置显示COverlaym_ProOver;// 曲线图形显示CGdiViewm_ProView;// 图形显示视图窗口
```

```
在对话框窗口的.cpp 实现文件中添加相应的功能实现。
```

```
// CalibrationDemoDlg.cpp : implementation file
```

```
// CCaliperDemoDlg message handlers
```

```
BOOLCCaliperDemoDlg::OnInitDialog()
```

```
{
```

```
//...
```



```
RECTrect;
   GetDlgItem(IDC GDI RECT)->GetWindowRect( &rect );
    ScreenToClient( &rect );
                                             // 按自定义的区域创建图形显示视图窗口。
    m GdiView.Create( m hWnd, rect );
    m_GdiView.SetBackColor( RGB(0,0,64) );
                                             // 设置默认的背景颜色
    m GdiView.SetDisplayImage( &m Image );
                                             // 设置当前显示的图像
    m_GdiView.SetActiveOverlay(&m_Overlay); // 设置当前显示的覆盖图ROI 图形显示。
    m_GdiView.SetStaticOverlay(&m_Results); // 设置当前显示的覆盖图结果图形显示。
                                              //将需要显示的图形添加到覆盖图容器中。
    m_Overlay.AddItem( &m_Rect );
}
// 执行测量
voidCCaliperDemoDlg::OnExecuct()
{
    // TODO: Add your control notification handler code here
    m_Caliper.SetPolarity1( m_Combol.GetCurSel() );
    m Caliper.SetPolarity2( m Combo2.GetCurSel() );
    m_Caliper.SetLocation( m_Combo3.GetCurSel() );
    m Caliper.SetThreshold(GetDlgItemInt(IDC EDIT1));
    m_Caliper.SetFilterHalf(GetDlgItemInt(IDC_EDIT2));
    BeginTime();
    // 执行测量
    m_Caliper.Execute( m_Image, m_Rect );
    EndTime();
    // 创建投影曲线
    m_Profile.Create( m_Caliper.GetLength() );
    m_Profile.SetCurve1( m_Caliper.GetProjection() );
    m_Profile.SetCurve2( m_Caliper.GetStrengths() );
    m_Profile.SetThreshold( double(GetDlgItemInt(IDC_EDIT1)) );
    // 建立坐标系变换
    CFrameTranstrans( m_Rect );
    intitem;
    CStringtext;
```

www.ckvision.net



```
CaliperData* data;
m List1.DeleteAllItems();
Overlay_DeleteAll(m_Results);// 清除已有的结果显示覆盖图形
for( inti=0; i<m_Caliper.GetCaliperCount(); i++ ) {</pre>
    data = m_Caliper.GetCaliperData( i );//获取数据
    text.Format( "%d", i+1 );
    item = m_List1.InsertItem( i, text );
    text.Format( "%0.2f", data->Width );
    m_List1.SetItemText( item, 1, text );
    text.Format( "%0.2f", data->Center.x );
    m List1.SetItemText( item, 2, text );
    text.Format( "%0.2f", data->Center.y );
    m List1.SetItemText( item, 3, text );
    m_Profile.AddEdge( data->Edge1.Distance );
    m Profile.AddEdge( data->Edge2.Distance );
    CGdiLine* p1 = newCGdiLine(
         data->Edge1.Distance, 0,
         data->Edge1.Distance,
         m_Rect.height );
    if( p1!=NULL ) {
         p1->Transform( &trans );
         p1->SetPenColor( RGB(0, 255, 0) );
         m_Results.AddItem( p1 );// 添加到结果显示图形表面
    }
    CGdiLine* p2 = newCGdiLine(
         data->Edge2.Distance, 0,
         data->Edge2.Distance,
         m_Rect.height );
    if (p2!=NULL) {
         p2->Transform( &trans );
         p2->SetPenColor( RGB(0,255,0) );
         m_Results.AddItem( p2 );
    }
    CGdiLine* p3 = newCGdiLine(
             data->Edge1.Position,
             data->Edge2.Position );
    if (p3!=NULL) {
         p3->SetPenColor( RGB(0, 255, 0) );
```



```
m_Results.AddItem(p3);
}
m_GdiView.Redraw();// 刷新显示视图
m_ProView.Redraw();
}
//.....详情请打开实例参考。
```

# ColorMatchDemo 色彩匹配

```
在 StdAfx.h 的头文件中添加 CKVISION 相关定义
```

```
#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKColor.h"
```

```
//#include "..\\..\\Include\\CKColorIdentify.h" // 颜色识别
//#include "..\\..\\Include\\CKColorMonitor.h" // 颜色监测
```

# #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKColor.lib")
#else
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKColor.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKColor.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKColor.lib")
```

usingnamespaceCKVision;

# 在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。 // CColorMatchDemoApp initialization

BOOLCColorMatchDemoApp::InitInstance()

```
{
    CKVision::InitLibrary(); // 初始化 CKVision 库
    //...
```



```
//...End
CKVision::ExitLibrary(); // 退出 CKVision 库
```

```
}
```

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的.h 头文件中定义相应的图像处理功能: // ColorMatchDemoDlg.h : header file

| CPrImage                           | m_Image; // | 基础图像                          |     |  |
|------------------------------------|-------------|-------------------------------|-----|--|
| CGdiRect                           | m_Rect;     | // 矩形区域ROI                    |     |  |
| CGdiCircle                         | m_Roi;      | // 圆形区域ROI                    |     |  |
| COverlay                           | m_Overlay;  | // 图像上层显示表面, 前显示的动态图形,主要用于ROI | 显示。 |  |
| CGdiView                           | m_Display;  | // 图形显示视图窗口                   |     |  |
|                                    |             |                               |     |  |
| CColorSamples m_Sample;// 颜色样本集合   |             |                               |     |  |
| CColorIdentify m_Identify; // 颜色识别 |             |                               |     |  |
|                                    |             |                               |     |  |
|                                    |             |                               |     |  |

COverlay m\_sOverlay; CGdiView m\_sDisplay; CGdiHistogram m\_sHistogram; //学习样本直方图显示

COverlay m\_tOverlay; CGdiView m\_tDisplay; CGdiHistogram m\_tHistogram;//匹配样本直方图显示

在对话框窗口的.cpp 实现文件中添加相应的功能实现。 // ColorMatchDemoDlg.cpp : implementation file

#### // CColorMatchDemoDlg message handlers

BOOLCColorMatchDemoDlg::OnInitDialog()

# // 颜色识别

voidCColorMatchDemoDlg::OnExecute()



```
{
    // TODO: Add your control notification handler code here
    doubledMatchScore = 0;
    m_Identify.SetSensitivity( m_Combol.GetCurSel() );
    m_Identify.SetSatThreshold( GetDlgItemInt(IDC_EDIT1) );
    BeginTime();
    // 颜色识别
    m_Identify.Execute( m_Image, m_Roi );
    // 识别当前颜色与颜色样本的区别
    m_Identify.Identify( m_Sample, dMatchScore );
    EndTime();
    CStringtext;
    text.Format( "%f", dMatchScore );
    SetDlgItemText( IDC_DATA1, text );
    m_tHistogram.SetValues(
        m Identify.GetColorValues(),
        m_Identify.GetColorCount() );
    m_tDisplay.Redraw();//识别样本直方图刷新显示
}
//.....详情请打开实例参考。
ColorThresholdDemo 彩色二值化
```

```
在 StdAfx.h 的头文件中添加 CKVISION 相关定义
#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKColor.h"
//#include "..\\..\\Include\\CKHSIThreshold.h" // 颜色抽取
```

```
#ifdef_WIN64
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
```



# 深圳市创科自动化控制技术有限公司

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKColor.lib")
#else
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKColor.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKColor.lib")
```

```
usingnamespaceCKVision;
```

# 在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
// ColorThresholdDemo.cpp : Defines the class behaviors for the application.
BOOLCColorThresholdDemoApp::InitInstance()
```

```
{
    CKVision::InitLibrary(); // 初始化 CKVision 库
    //...
    //...End
```

```
CKVision::ExitLibrary();  // 退出 CKVision 库
```

}

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

```
// ColorThresholdDemoDlg.h : header file
    CPrImage m_Image; // 基础图像
    CPrImage m_Result; // 处理后的图像
    CGdiView m_GdiView; // 图形显示视图窗口
    CHSIThreshold m_hsiThre; // HSI 颜色抽取
```

在对话框窗口的.cpp 实现文件中添加相应的功能实现。

```
// ColorThresholdDemoDlg.cpp : implementation file
// CColorThresholdDemoDlg message handlers
B00LCColorThresholdDemoDlg::OnInitDialog()
{
```

// TODO: Add extra initialization here

RECTrect;



深圳市创科自动化控制技术有限公司

```
GetDlgItem(IDC_VIEW_RECT)->GetWindowRect( &rect );
    ScreenToClient( &rect );
    m_GdiView.Create( m_hWnd, rect );
                                             // 按自定义的区域创建图形显示视图窗口。
    m_GdiView.SetBackColor( RGB(0,0,64) );
                                             // 设置默认的背景颜色
    m_GdiView.SetDisplayImage( &m_Image );
                                             // 设置当前显示的图像
}
// 执行彩色二值化
voidCColorThresholdDemoDlg::OnExecute()
{
    /\!/ TODO: Add your control notification handler code here
    m hsiThre.SetHueRange( m Slider1.GetPos(), m Slider2.GetPos() );
    m_hsiThre.SetSaturationRange( m_Slider3.GetPos(), m_Slider4.GetPos() );
    m_hsiThre.SetIntensityRange( m_Slider5.GetPos(), m_Slider6.GetPos() );
    BeginTime();
    // 执行颜色抽取(彩色二值化)
    m_hsiThre.Execute( m_Image, m_Result, MaxROI );
    EndTime();
    m_GdiView.SetDisplayImage(&m_Result);// 设置当前显示的图像为处理后的图像
    m GdiView. Redraw();// 刷新显示视图
}
//.....详情请打开实例参考。
```

# ContourDemo 轮廓提取

在 StdAfx.h 的头文件中添加 CKVISION 相关定义

```
// 添加自定义删除图形消息
#defineWM_DELETE_FIGURES WM_USER+123
```

```
#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKContour.h"
```

```
#ifdef_WIN64
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
```



## 深圳市创科自动化控制技术有限公司

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKContour.lib")
#else
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKContour.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKContour.lib")
```

usingnamespaceCKVision;

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。 // CContourDemoApp initialization

```
BOOLCContourDemoApp::InitInstance()
```

```
{
    CKVision::InitLibrary(); // 初始化 CKVision 库
    //...
    //...End
    CKVision::ExitLibrary(); // 退出 CKVision 库
}
```

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

```
在对话框窗口的 .h 头文件中定义相应的图像处理功能:
             m Image; // 基础图像
   CPrImage
   CContourDetect
                 m_Contour; // 轮廓检测
   CGdiRect
             m_Rect;
                       // 矩形ROI 检测区域
                       // 图像显示表面, 前显示的动态图形, 主要用于ROI 显示。
   COverlay
             m_Overlay;
                        // 图像显示表面, 前显示的静态图形, 主要用于检测结果生成图形
   COverlay
             m_Results;
显示。
                       // 图形显示视图窗口
   CGdiView
             m GdiView;
   // 添加自定义消息删除图形
   afx_msgLRESULTOnDeleteFigures( WPARAMwParam, LPARAM1Param );
```

在对话框窗口的.cpp 实现文件中添加相应的功能实现。

```
//{{AFX_MSG_MAP(CContourDemoDlg)
```

```
ON_MESSAGE( WM_DELETE_FIGURES, OnDeleteFigures )
```



#### // 以消息的方式删除图形

```
LRESULTCContourDemoDlg::OnDeleteFigures( WPARAMwParam, LPARAM1Param )
{
    if( m_Results.GetCount() )
    {
         for( inti=0; i<m_Results.GetCount(); i++ )</pre>
         {
             deletem_Results[i];
         m_Results.RemoveAll();
    }
    return OL;
}
// 执行轮廓检测
voidCContourDemoDlg::OnExecute()
{
    /\!/ TODO: Add your control notification handler code here
    m Contour.SetThreshold( GetDlgItemInt(IDC EDIT1) );
    m_Contour.SetMinLength( GetDlgItemInt(IDC_EDIT2) );
    m_Contour.SetMaxLength( GetDlgItemInt(IDC_EDIT3) );
    m_Contour.SetFilterSize( m_Combol.GetCurSel() );
    m Contour.SetSubPixel( m SubPixel.GetCheck() );
    BeginTime();
    if( m_Rect.GetVisible() )
         m_Contour.Execute(m_Image, m_Rect);// 执行轮廓检测
    else
         m_Contour.Execute( m_Image, MaxROI );
    EndTime();
    CStringtext;
    MPNT* data=NULL;
    m_List1. DeleteAllItems();
    //Overlay_DeleteAll(m_Results);// 删除所有图形,请注意在线程中调用清除图形时,最好使用发
送消息的方式。
    SendMessage(WM_DELETE_FIGURES, 0, 0); // 发送消息删除图形
    if( m_Contour.GetPointCount()>0 ) {
```



```
intnum, n=0, i=0;
    while (i \ge 0) {
         data = m_Contour.GetPointData(i);
         i = m_Contour.GetContourId(i, num);
         text.Format( "%d", n );
         m_List1.InsertItem( n, text );
         text.Format( "%d", num );
         m_List1.SetItemText( n, 1, text );
         text = (data->m&MCP CLOSE) ? "是" : "否";
         m_List1.SetItemText( n, 2, text );
         n++;
    }
    // 根据结果数据添加到覆盖图显示
    CGdiContour* pp = newCGdiContour(
         m_Contour.GetPointData(0),
         m Contour.GetPointCount() );
    if( pp!=NULL ) {
         pp->Offset( 0.5, 0.5 );
         pp->SetPenWidth( 2 );
         pp->SetPenColor(RGB(0, 200, 0));
         m_Results.AddItem(pp);
    }
}
// 刷新视图显示
m_GdiView.Redraw();
```

```
//.....详情请打开实例参考。
```

}

DataMatrixDemo 二维码读取(DM 码)

在 StdAfx.h 的头文件中添加 CKVISION 相关定义



```
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKDataMatrix.h"
```

#### #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKReader.lib")
#else
#pragmacomment(lib, "..\\..\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\Lib\\CKReader.lib")
#pragmacomment(lib, "..\\..\Lib\\CKReader.lib")
```

usingnamespaceCKVision;

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库 //...
```

```
//...End
CKVision::ExitLibrary(); // 退出 CKVision 库
```

# 在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

```
CPrImage
             m_Image; // 基础图像
   CGdiRect
             m_Rect; // 矩形ROI 检测区域
   COverlay
                        // 图像显示表面, 前显示的动态图形, 主要用于ROI 显示。
             m_Overlay;
   COverlay
             m Results; // 图像显示表面, 前显示的静态图形, 主要用于检测结果生成图形
显示。
   CGdiView
                        // 图形显示视图窗口
             m_GdiView;
   CDataMatrix
                           // 读取 DataMatrix 二维码
                 m_dm;
```

```
在对话框窗口的.cpp 实现文件中添加相应的功能实现。
```

```
// 执行读取DataMatrix 二维码
voidCDataMatrixDemoDlg::OnExecute()
```

```
{
```



// TODO: Add your control notification handler code here
Overlay\_DeleteAll(m\_Results);

```
intoption = 0;
```

```
if( IsDlgButtonChecked(IDC_CHECK2) )
        option |= 0x20;
```

if( IsDlgButtonChecked(IDC\_CHECK3) )
 option |= 0x01;

```
m_dm.SetFilterLevel(m_Combol.GetCurSel());
m_dm.SetPolarity(m_Combo2.GetCurSel());
m_dm.SetShapeType(m_Combo3.GetCurSel());
m_dm.SetOptions(option);
```

```
m_dm.SetMaxCount(GetDlgItemInt(IDC_EDIT5));
m_dm.SetThreshold(m_Combo4.GetCurSel());
m_dm.SetDefectLen(GetDlgItemInt(IDC_EDIT8));
```

```
m_dm.SetCodeWidth(GetDlgItemInt(IDC_EDIT3));
m_dm.SetCodeHeight(GetDlgItemInt(IDC_EDIT4));
```

```
m_dm.SetNumCellX(GetDlgItemInt(IDC_EDIT6));
m_dm.SetNumCellY(GetDlgItemInt(IDC_EDIT7));
```

```
BeginTime();
```

```
if( m_Rect.GetVisible() )
{
    m_dm.Execute( m_Image, m_Rect );// 执行读取DataMatrix 二维码
}
else
{
    m_dm.Execute( m_Image, MaxROI );
}
EndTime();
```

CStringtext;



```
DataMatrixResult* data;
m List1.DeleteAllItems();
for( inti=0; i<m_dm.GetResultCount(); i++ )</pre>
{
     data = m_dm.GetResultCode(i);
     text.Format( "%d", i+1 );
     m List1.InsertItem( i, text );
     text.Format( "%0.2f", data->border[0].x );
     m_List1.SetItemText( i, 1, text );
     text.Format( "%0.2f", data->border[0].y );
     m_List1.SetItemText( i, 2, text );
     m_List1.SetItemText( i, 3, data->codeText );
     CGdiPolygon* p1 = newCGdiPolygon;
     if( p1!=NULL )
     {
          p1 \rightarrow SetMax(4);
          p1->Add(data->border[0]);
          p1->Add(data->border[1]);
          p1 \rightarrow Add(data \rightarrow border[2]);
          p1->Add(data->border[3]);
          if( data->codeLen>0 )
          {
               p1->SetPenColor(RGB(0,255,0));
          }
          else
          {
               p1->SetPenColor(RGB(255,0,0));
          }
          p1->SetPenWidth(2);
          m_Results.AddItem(p1);// 添加显示图形
     }
}
```

m\_GdiView.Redraw(); // 刷新视图,显示图形

}

```
//.....详情请打开实例参考。
```



## EdgeToolDemo 边缘点检测

在 StdAfx.h 的头文件中添加 CKVISION 相关定义

```
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKEdgeTool.h"
```

### #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#else
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKMeasure.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKMeasure.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKMeasure.lib")
```

#### usingnamespaceCKVision;

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库
//...
```

# //...End

```
CKVision::ExitLibrary(); // 退出 CKVision 库
```

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

| CPrImage   | m_Image; // 基 | 長础 | 图像       |                       |
|------------|---------------|----|----------|-----------------------|
| CGdiRotBox | m_Rect;       |    | // 旋转矩形R | 10                    |
| CEdgeTool  | m_EdgeTool;   | // | 边缘点检测    |                       |
|            |               |    |          |                       |
| COverlay   | m_Overlay;    | // | 图像显示表面,  | 前显示的动态图形,主要用于ROI 显示。  |
| COverlay   | m_Results;    | // | 图像显示表面,  | 前显示的静态图形,主要用于检测结果生成图形 |



{

```
显示。
    CGdiView
                 m GdiView;
                              // 图形显示视图窗口
    CGdiProfile
                                  // 投影曲线边缘位置显示
                     m_Profile;
    COverlay
                              // 曲线图形显示
                 m ProOver;
    CGdiView
                 m_ProView;
                              // 图形显示视图窗口
在对话框窗口的.cpp 实现文件中添加相应的功能实现。
// 执行边缘点检测
voidCEdgeToolDemoDlg::OnExecute()
    // TODO: Add your control notification handler code here
    m_EdgeTool.SetPolarity( m_Combol.GetCurSel() );
    m EdgeTool.SetLocation( m Combo2.GetCurSel() );
    m_EdgeTool.SetThreshold(GetDlgItemInt(IDC_EDIT1));
    m_EdgeTool.SetFilterHalf(GetDlgItemInt(IDC_EDIT2));
    BeginTime();
    m_EdgeTool.Execute( m_Image, m_Rect ); // 执行区域内的边缘点检测
    EndTime():
    // 创建曲线显示视图窗口
    m Profile.Create( m EdgeTool.GetLength() );
    m_Profile.SetCurve1( m_EdgeTool.GetProjection() );
    m Profile.SetCurve2( m EdgeTool.GetStrengths() );
    m_Profile.SetThreshold( double(GetDlgItemInt(IDC_EDIT1)) );
    intitem;
    CStringtext;
    EdgeData* data;
    m_List1. DeleteAllItems();
    Overlay_DeleteAll(m_Results);
    for( inti=0; i<m_EdgeTool.GetEdgeCount(); i++ ) {</pre>
        data = m_EdgeTool.GetEdgeData( i );
        text.Format( "%d", i+1 );
        item = m_List1.InsertItem( i, text );
        text.Format( "%d", data->Polarity );
        m_List1.SetItemText( item, 1, text );
        text.Format( "%0.3f", data->Strength );
        m List1.SetItemText( item, 2, text );
        text.Format( "%0.3f", data->Position.x );
```

```
text.Format( "%0.3f", data->Position.y );
```



```
m_List1.SetItemText( item, 4, text );
    m Profile.AddEdge( data->Distance );
    // 把结果数据添加到覆盖图显示
    CGdiPoint* p = newCGdiPoint(
        data->Position.x+0.5,
        data->Position.y+0.5 );
    if( p!=NULL ) {
        p->SetSize( 3 );
        p->SetStyle( 1 );
        p->SetPenColor( RGB(0, 255, 0) );
        m Results.AddItem( p );
    }
}
m GdiView. Redraw(); // 刷新显示视图
m_ProView.Redraw();
                   // 刷新曲线视图
```

//.....详情请打开实例参考。

}

# FitCircleDemo 圆形测量(拟合圆)

在 StdAfx.h 的头文件中添加 CKVISION 相关定义

#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKEdgeTool.h"
#include"..\\..\\Include\\CKFitCircle.h"

#### #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKMeasure.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKMeasure.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKMeasure.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKMeasure.lib")
```



usingnamespaceCKVision;

```
在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。
```

```
CKVision::InitLibrary(); // 初始化 CKVision 库 //...
```

```
//...End
CKVision::ExitLibrary(); // 退出 CKVision 库
```

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

|    | CPrImage     | m_Image; // | 基础图像                             |
|----|--------------|-------------|----------------------------------|
|    | CEdgeTool    | m_EdgeTool; | // 边缘点检测                         |
|    | CFitCircle   | m_Fit;      | // 圆拟合工具                         |
|    | CGdiRingScan | m_Ring;     | // 圆环内扫描线ROI                     |
|    | COverlay     | m_Overlay;  | // 图像显示表面, 前显示的动态图形,主要用于ROI 显示。  |
|    | COverlay     | m_Results;  | // 图像显示表面, 前显示的静态图形,主要用于检测结果生成图形 |
| 显示 | 0            |             |                                  |
|    | CGdiView     | m_GdiView;  | // 图形显示视图窗口                      |
|    | COverlay     | m_ProOver;  | // 曲线图形显示                        |
|    | CGdiView     | m_ProView;  | // 图形显示视图窗口                      |

在对话框窗口的.cpp 实现文件中添加相应的功能实现。

```
// 圆形测量
voidCFitCircleDemoDlg::OnExecute()
{
    // TODO: Add your control notification handler code here
    UpdateData( TRUE );
    Overlay_DeleteAll(m_Results);// 清除原来的显示
    Overlay_DeleteAll(m_ProOver);// 清除原来的显示
    // 边缘点检测设置参数
```

```
m_EdgeTool.SetPolarity( m_Combol.GetCurSel() );
m_EdgeTool.SetLocation( m_Combo2.GetCurSel() );
```



```
m_EdgeTool.SetThreshold(GetDlgItemInt(IDC_EDIT1));
m_EdgeTool.SetFilterHalf(GetDlgItemInt(IDC_EDIT2));
//拟合圆设置容忍误差
m_Fit.SetTolerance( m_dTolerate );
BeginTime();
intnum=0;
ROTRECTrc;
EdgeData* data;
// 圆环内扫描线设置扫描参数
m_Ring.SetScanCount(GetDlgItemInt(IDC_EDIT3));
m Ring.SetScanWidth( GetDlgItemInt(IDC EDIT4) );
// 坐标点容器
CPointVector(m_Ring.GetScanCount());
for( inti=0; i<m_Ring.GetScanCount(); i++ ) {</pre>
    m Ring.GetScanRoi( i, rc );
    m_EdgeTool.Execute( m_Image, rc );// 边缘点检测
    CGdiProfile* pProfile = new
         CGdiProfile(m EdgeTool.GetLength());
    data = m_EdgeTool.GetEdgeData(0);// 获取边缘点数据
    if( data != NULL ) {
         ptVector.Add(data->Position);// 把点添加到容器中
        CGdiPoint* pp = new
             CGdiPoint(data->Position);
         if( pp != NULL ) {
             pp->Offset( 0.5, 0.5 );
             pp->SetStyle( 1 );
             pp->SetPenColor( RGB(255, 255, 0) );
             m_Results.AddItem(pp);//显示扫描边缘点
         if( pProfile!=NULL ) {
             pProfile->AddEdge(data->Distance);
         }
    }
    if( pProfile!=NULL ) {
```



```
pProfile->SetCurve1( m_EdgeTool.GetProjection() );
         pProfile->SetCurve2( m_EdgeTool.GetStrengths() );
         pProfile->SetThreshold( m EdgeTool.GetThreshold() );
         pProfile->SetVisible( FALSE );
         m_ProOver.AddItem( pProfile );// 曲线图显示
    }
}
// 执行拟合圆形
if( m_Fit.Execute( ptVector ) ) {
    for( intn=0; n<m_Results.GetCount(); n++ ) {</pre>
         if( m_{Fit.GetUse(n) == false}) {
              m Results[n]->SetPenColor(RGB(255,0,0));
         }
    }
    CGdiCircle* p = newCGdiCircle;
    if (p != NULL) {
         p->radius = m_Fit.GetRadius();
         p->center.x = m_Fit.GetCenterX();
         p->center.y = m Fit.GetCenterY();
         p->0ffset(0.5, 0.5);
         p->SetPenColor(RGB(0, 255, 0));
         m_Results.AddItem( p );// 显示圆
    }
}
CStringtext;
text.Format( "半径(R): %0.2f", m Fit.GetRadius());
SetDlgItemText( IDC_DATA1, text );
text.Format( "中心(X): %0.2f", m_Fit.GetCenterX() );
SetDlgItemText( IDC_DATA2, text );
text.Format( "中心(Y): %0.2f", m_Fit.GetCenterY() );
SetDlgItemText( IDC_DATA3, text );
text.Format( "拟合误差: %0.2f", m_Fit.GetRMSError() );
SetDlgItemText( IDC_DATA4, text );
```

EndTime();



```
if( m_ProOver.GetCount()>0 )
    m_ProOver[0]->SetVisible( TRUE );
SetDlgItemInt( IDC_EDIT5, 0 );
m_GdiView.Redraw();// 刷新显示视图
```

```
m_ProView. Redraw();// 刷新显示曲线视图
```

```
}
```

```
//.....详情请打开实例参考。
```

# FitLineDemo 直线测量(拟合直线)

```
在 StdAfx.h 的头文件中添加 CKVISION 相关定义
```

```
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKEdgeTool.h"
```

# #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKMeasure.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKMeasure.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKMeasure.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKMeasure.lib")
```

usingnamespaceCKVision;

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库
//...
//...End
CKVision::ExitLibrary(); // 退出 CKVision 库
```



在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

# 在对话框窗口的 .h 头文件中定义相应的图像处理功能:

```
CPrImage
                         // 基础图像
              m_Image;
   CEdgeTool
                            // 边缘点检测
              m EdgeTool;
   CFitLine
              m Fit;
                            // 直线拟合工具
   CGdiBoxScan
                 m Rect;
                                // 旋转矩形框内扫描线ROI
                            // 图像显示表面, 前显示的动态图形, 主要用于ROI 显示。
   COverlay
              m_Results;
                            // 图像显示表面, 前显示的静态图形,主要用于检测结果生成
   COverlay
              m_Overlay;
图形显示。
                            // 图形显示视图窗口
   CGdiView
              m_GdiView;
   COverlay
              m CurveOver; // 曲线图形显示
              m_CurveView; // 图形显示视图窗口
   CGdiView
```

在对话框窗口的.cpp 实现文件中添加相应的功能实现。

# // 拟合直线 voidCFitLineDemoDlg::OnExecute() { // TODO: Add your control notification handler code here Overlay DeleteAll(m Results); // 清除原来的显示 Overlay\_DeleteAll(m\_CurveOver); // 清除原来的显示 // 边缘点检测设置参数 m\_EdgeTool.SetPolarity( m\_Combol.GetCurSel() ); m\_EdgeTool.SetLocation( m\_Combo2.GetCurSel() ); m EdgeTool.SetThreshold( GetDlgItemInt(IDC EDIT1) ); m\_EdgeTool.SetFilterHalf(GetDlgItemInt(IDC\_EDIT2)); BeginTime(); intnum=0; ROTRECTrc: EdgeData\* data; //旋转矩形框内扫描线设置

```
m_Rect.SetScanCount(GetDlgItemInt(IDC_EDIT3));
m_Rect.SetScanWidth(GetDlgItemInt(IDC_EDIT4));
// 坐标点容器
```

```
CPointVectorptVector(m_Rect.GetScanCount());
```



深圳市创科自动化控制技术有限公司

```
for( inti=0; i<m_Rect.GetScanCount(); i++ ) {</pre>
    m Rect.GetScanRoi( i, rc );
    m EdgeTool.Execute(m Image, rc);// 边缘点检测
    CGdiProfile* pProfile = new
        CGdiProfile(m EdgeTool.GetLength()); //创建投影曲线边缘位置
    data = m_EdgeTool.GetEdgeData(0);
    if( data != NULL ) {
        ptVector.Add( data->Position ); // 把点添加到容器中
        CGdiPoint* pp = new
             CGdiPoint(data->Position);
        if( pp != NULL ) {
             pp->SetStyle( 1 );
             pp->SetPenColor( RGB(0, 255, 255) );
             m Results.AddItem( pp );
        }
        if( pProfile!=NULL ) {
             pProfile->AddEdge( data->Distance );
        }
    }
    if( pProfile!=NULL ) {
        pProfile->SetCurve1(m EdgeTool.GetProjection()); // 设置曲线投影数据
        pProfile->SetCurve2(m_EdgeTool.GetStrengths()); // 设置曲线梯度数据
        pProfile->SetThreshold( m EdgeTool.GetThreshold() );
        pProfile->SetVisible( FALSE );
        m_CurveOver.AddItem( pProfile ); // 添加曲线到显示容器
    }
}
CStringtext;
GetDlgItemText( IDC_EDIT5, text );
// 拟合直线容忍误差设置
m_Fit.SetTolerance( atof(text) );
//执行拟合直线
if( m_Fit.Execute( ptVector ) ) {
    for( intn=0; n<m_Results.GetCount(); n++ ) {
         if(m_Fit.GetUse(n)==false) { // 不参与拟合的点
             m_Results[n]->SetPenColor(RGB(255,0,0)); // 设置红色显示
        }
    }
    DLINEline;
```

www.ckvision.net



}

}

```
m_Fit.GetLine(9999,line);
     CGdiLine* pp = newCGdiLine(line);
     if( pp != NULL ) {
         pp->Offset( 0.5, 0.5 );
         pp->SetPenColor( RGB(0, 255, 0) );
         m_Results.AddItem( pp );
    }
     text.Format( "%0.2f", m_Fit.GetRMSError() );
     SetDlgItemText( IDC_RMSE, text );
     text.Format( "%0.2f", m_Fit.GetSampling() );
     SetDlgItemText( IDC_SAMPL, text );
     text.Format( "%0.2f", m_Fit.GetAngle() );
     SetDlgItemText( IDC_ANGLE, text );
     text.Format( "%0.2f", m_Fit.GetCenterX() );
     SetDlgItemText( IDC_CENTER_X, text );
     text.Format( "%0.2f", m_Fit.GetCenterY() );
     SetDlgItemText( IDC_CENTER_Y, text );
} else {
     SetDlgItemText( IDC_RMSE, "" );
     SetDlgItemText( IDC_ANGLE, "" );
     SetDlgItemText( IDC LENGTH, "" );
     SetDlgItemText( IDC_CENTER_X, "" );
    SetDlgItemText( IDC_CENTER_Y, "" );
EndTime();
if( m_CurveOver.GetCount()>0 )
     m_CurveOver[0]->SetVisible( TRUE );
SetDlgItemInt( IDC_EDIT6, 0 );
//刷新显示
m_GdiView.Redraw();
m_CurveView.Redraw();
```



//.....详情请打开实例参考。

# HistogramDemo 灰度直方图、自动二值化阈值

在 StdAfx.h 的头文件中添加 CKVISION 相关定义

#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKBase.h"

### #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#else
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#endif
```

usingnamespaceCKVision;

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库 //...
```

```
CKVision::ExitLibrary(); // 退出 CKVision 库
```

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

| CPrImage   | m_Image; // 基 | 基础图像                            |
|------------|---------------|---------------------------------|
| CGdiRect   | m_Rect;       | // 矩形区域                         |
| CHistogram | m_Histogram;  | // 直方图功能                        |
| COverlay   | m_Overlay;    | // 图像显示表面, 前显示的动态图形,主要用于ROI 显示。 |
| CGdiView   | m_GdiView;    | // 图形显示视图窗口                     |
| COverlay   | m_HistOver;   | // 直方图显示图 覆盖图                   |
| CGdiView   | m HistView;   | // 图形显示视图窗口                     |

106 / 138

www.ckvision.net



CGdiHistogram m\_GdiHist; // 直方图显示数据

在对话框窗口的.cpp 实现文件中添加相应的功能实现。

### // 执行直方图分析

{

voidCHistogramDemoDlg::OnExecute()

// TODO: Add your control notification handler code here

```
// 设置分析功能
```

m\_Histogram.SetAnalyse( Analyse\_Min\_Max|Analyse\_Mean\_StdDev );

```
BeginTime();
```

```
if( m_Rect.GetVisible() )
```

m\_Histogram.Execute( m\_Image, m\_Rect ); // 执行直方图分析

```
else
```

}

m\_Histogram.Execute( m\_Image, MaxROI ); EndTime();

```
CStringtext;
```

```
SetDlgItemInt( IDC_DATA1, m_Histogram.GetMin() );
SetDlgItemInt( IDC_DATA2, m_Histogram.GetMax() );
text.Format( "%0.2f", m_Histogram.GetMean() );
SetDlgItemText( IDC_DATA3, text );
text.Format( "%0.2f", m_Histogram.GetStdDev() );
SetDlgItemText( IDC_DATA4, text );
```

```
intitem;
intnLen = m_Histogram.GetLength();
int* pValues = m_Histogram.GetValues();
m_List1.DeleteAllItems();
for( inti=0; i<nLen; i++ ) {
    item = m_List1.InsertItem( i, "" );
    text.Format( "%d", i );
    m_List1.SetItemText( item, 0, text );
    text.Format( "%d", pValues[i] );
    m_List1.SetItemText( item, 1, text );
}
m_GdiHist.SetValues( pValues, nLen ); // 设置直方图数据
m_HistView.Redraw();// 直方图刷新显示
```



# //.....详情请打开实例参考。

# ImageDemo 图像预处理

在 StdAfx.h 的头文件中添加 CKVISION 相关定义

#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKGDI.h"

#### #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#else
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#endif
```

usingnamespaceCKVision;

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库
//...
```

```
CKVision::ExitLibrary(); // 退出 CKVision 库
```

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

| CPrImage | m_Image; //             | 基础图像        |
|----------|-------------------------|-------------|
| CPrImage | <pre>m_Result; //</pre> | 处理后的结果图像    |
| CGdiView | m_GdiView;              | // 图形显示视图窗□ |

在对话框窗口的.cpp 实现文件中添加相应的功能实现。


#### // 执行

{

```
voidCImageDemoDlg::OnExecute()
    /\!/ TODO: Add your control notification handler code here
    UpdateData( TRUE );
    BeginTime();
    switch( m_Combol.GetCurSel() )
    {
    case 0:
         ImgSmooth( m_Image, m_Result ); // 平滑
         break;
    case 1:
         ImgSharp( m_Image, m_Result ); // 锐化
         break;
    case 2:
         ImgSobel( m_Image, m_Result ); // Sobel边缘
         break;
    case 3:
         ImgErode( m_Image, m_Result );// 腐蚀
         break;
    case 4:
         ImgDilate( m_Image, m_Result );// 膨胀
         break;
    }
    EndTime();
    // 把处理结果图复制到当前图像
    m_Image.Copy( m_Result );
    m_GdiView.Redraw();
```

//.....详情请打开实例参考。

}

# ImageWarpDemo 环形展开裁剪图像

```
在 StdAfx.h 的头文件中添加 CKVISION 相关定义
#include"..\\..\\Include\\CKBase.h"
```



#include"..\\..\\Include\\CKGDI.h"

# #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#else
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#endif
```

usingnamespaceCKVision;

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库
//...
//...End
CKVision::ExitLibrary(); // 退出 CKVision 库
```

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

| CPrImage | m_Image; //               | 基础图像                            |
|----------|---------------------------|---------------------------------|
| CPrImage | <pre>m_Result; // ;</pre> | 处理后的结果图像                        |
| CGdiRing | m_Roi;                    | // 圆环图形ROI                      |
| COverlay | m_Overlay;                | // 图像显示表面, 前显示的动态图形,主要用于ROI 显示。 |
| CGdiView | m_GdiView1;               | // 图形显示视图窗口                     |
| CGdiView | m_GdiView2;               | // 图形显示视图窗口                     |

在对话框窗口的.cpp 实现文件中添加相应的功能实现。

# // 执行

{

voidCImageWarpDemoDlg::OnExecute()

```
// TODO: Add your control notification handler code here
BeginTime();
```

// 环形区域展开,把来源图像按ROI 裁剪,返回结果图像



```
ImgRingWarp(m_Image, m_Result, m_Roi, m_Check1.GetCheck());
EndTime();
m_GdiView2.FitSize();// 图像显示窗口自动适应显示。
m_GdiView2.Redraw(); // 刷新显示视图窗口。
}
//.....详情请打开实例参考。
```

ImgTransDemo 图形变换(镜像、平移、旋转、缩放、仿射)

在 StdAfx.h 的头文件中添加 CKVISION 相关定义

```
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKGDI.h"
```

## #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#else
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#endif
```

```
usingnamespaceCKVision;
```

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库 //...
```

```
//...End
CKVision::ExitLibrary(); // 退出 CKVision 库
```

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:



```
m_Image; // 基础图像
    CPrImage
                 m_Result; // 处理结果图像
    CPrImage
    CGdiView
                 m_GdiView;
                             // 图形显示视图窗口
    int
                     m nFunSel;
                                  // 功能选择
                     m_nMirFlag;
                                  // 镜像方式
    int
在对话框窗口的.cpp 实现文件中添加相应的功能实现。
// 执行
voidCImgTransDemoDlg::OnExecute()
{
    // TODO: Add your control notification handler code here
    UpdateData(TRUE);
    BeginTime();
    switch( m nFunSel ) {
    case 0:
         {
             m_nMirFlag=0;
             if( m bMir1==TRUE )
                 m_nMirFlag |= MirrorHor;
             if( m_bMir2==TRUE )
                 m_nMirFlag |= MirrorVer;
             if( m_bMir3==TRUE )
                 m nMirFlag |= MirrorRot;
             ImgMirror(m_Image, m_Result, m_nMirFlag);// 镜像
        }
        break;
    case 1:
         {
             ImgShift( m_Image, m_Result, m_dShiftX, m_dShiftY, m_bInpl );// 平移
        }
        break;
    case 2:
         {
             ImgScale( m_Image, m_Result, m_dScaleX, m_dScaleY, m_bInpl );// 缩放
        }
        break;
```



```
case 3:
     {
         ImgRotate(m_Image, m_Result, m_dAngle, m_bInpl);// 旋转
    }
    break;
case 4:
     {
         doublematrix[6];
         doublerd = m_dAngle*PI/180;
         doubleca = \cos(rd);
         doublesa = sin(rd);
         matrix[0] = ca*m_dScaleX;
         matrix[1] = sa*m_dScaleY;
         matrix[2] = m_dShiftX*m_dScaleX;
         matrix[3] = -sa*m_dScaleX;
         matrix[4] = ca*m_dScaleY;
         matrix[5] = m_dShiftY*m_dScaleY;
         ImgAffine( m_Image, m_Result, matrix, m_bInpl );// 仿射
    }
    break;
}
EndTime();
m_Combol.SetCurSel( 1 );
m_GdiView.SetDisplayImage(&m_Result);// 显示结果图像
m_GdiView.FitSize();
                                  // 适应显示
                                         // 刷新显示
m_GdiView.Redraw();
```

//.....详情请打开实例参考。

}

# InspectDemo 基于图像对比缺陷检测

```
在 StdAfx.h 的头文件中添加 CKVISION 相关定义
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKGDI.h"
```



```
#include"..\\..\\Include\\CKBlob.h"
#include"..\\..\\Include\\CKFindModel.h"
```

#### #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKBlob.lib")
#pragma comment(lib, "..\\..\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\Lib\\CKBlob.lib")
```

usingnamespaceCKVision;

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库 //...
```

```
//...End
CKVision::ExitLibrary(); // 退出 CKVision 库
```

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

| CPrImage      | m_Image; //  | 基础图像                            |
|---------------|--------------|---------------------------------|
| CPrImage      | m_ImgDst; // | 目标图像                            |
| CModel        | m_Model;     | // 定位模板                         |
| CFindModel    | m_Find;      | //形状模型搜索                        |
| CPatInspect   | m_Inspect;   | // 基于图像对比缺陷检测                   |
| CBlobAnalyzer | m_Blob;      | // 斑点分析                         |
| CGdiRect      | m_Rect;      | // 矩形检测区域                       |
| COverlay      | m_Overlay;   | // 图像显示表面, 前显示的动态图形,主要用于ROI 显示。 |

114 / 138

www.ckvision.net



| COverlay | m_Results;       | // | 图像显示表面, | 前显示的静态图形,主要用于检测结果生成 |  |
|----------|------------------|----|---------|---------------------|--|
| 图形显示。    |                  |    |         |                     |  |
| CGdiView | m_GdiView;       | // | 图形显示视图窗 | a 🗆                 |  |
| CGdiView | m SubView[4]: // | 图形 | 显示视图窗口  |                     |  |

## 在对话框窗口的.cpp 实现文件中添加相应的功能实现。

// 执行

{

voidCInspectDemoDlg::OnExecute()

// TODO: Add your control notification handler code here
Overlay\_DeleteAll( m\_Results );

## // 斑点分析参数设置

m\_Blob.SetBlobType( BLOB\_WHITE ); m\_Blob.SetConnexity( CONNEXITY\_8 ); m\_Blob.SetFeatures( BLOB\_FEATURE\_BASE|BLOB\_FEATURE\_AXIS ); m\_Blob.SetThreshold( GetDlgItemInt(IDC\_THRE) ); m\_Blob.SetLimitArea( GetDlgItemInt(IDC\_AREA) );

#### // 对比参数设置

m\_Inspect.SetMaskEnabled( m\_bMask.GetCheck() ); m\_Inspect.SetEqualizeMode( m\_Combol.GetCurSel() ); m\_Inspect.SetDefectType( m\_Combo2.GetCurSel() );

BeginTime();

#### // 模板定位参数设置

m\_Find.SetMinScore( 60 ); m\_Find.SetThreshold( m\_Model.GetThreshold()>>1 ); // 执行识别定位 m\_Find.Execute( m\_Image, m\_Model, MaxROI );

FindResult\* pData = m\_Find.GetResultData(0);
if( pData!=NULL ) {

ROTRECTrc; CPrImagetempl;

rc.angle = pData->Angle; rc.center = pData->Center; rc.width = pData->Width;



```
rc.height = pData->Height;
    templ.Cut( m_Image, rc );
                                           // 根据模板定位裁剪图像
    m_Inspect.Execute( templ, m_ImgDst ); // 进行图像对比
    m_Blob.Execute(m_ImgDst, MaxROI); // 分析对比后的图像
    CBlobData* data=NULL;
    CFrameTransframe( rc );
    for( inti=0; i<m_Blob.GetBlobCount(); i++ ) {</pre>
        data = m_Blob.GetBlobData(i);
        //椭圆图形功能
        CGdiEllipse* p1 = newCGdiEllipse(
             data->m dCenterMassX,
             data->m_dCenterMassY,
             data->m_dMajorAxis/2,
             data->m_dMinorAxis/2,
             data->m_dRotation );
        if( p1!=NULL ) {
             p1->Transform( &frame );
             p1 \rightarrow SetPenColor(RGB(255, 0, 0));
             m_Results.AddItem(p1); // 添加到显示覆盖图上
        }
    }
    /* 2D 旋转矩形功能*/
    CGdiRotBox* p2 = newCGdiRotBox(rc);
    if( p2!=NULL ) {
        p2->SetPenColor( RGB(0, 255, 0) );
        m_Results.AddItem( p2 );// 添加到显示覆盖图上
    }
} else {
    AfxMessageBox("没有搜索到目标!");
}
EndTime();
m_GdiView.Redraw();
                       //刷新显示
m_SubView[3].Redraw();
```

```
//.....详情请打开实例参考。
```

}



# ModelDemo 模板轮廓匹配定位(老版本)

```
在 StdAfx.h 的头文件中添加 CKVISION 相关定义
#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKLocate.h"
```

## #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKLocate.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKLocate.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKLocate.lib")
```

usingnamespaceCKVision;

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库
//...
//...End
CKVision::ExitLibrary(); // 退出 CKVision 库
```

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

| CPrImage   | m_Image;    | // 基础图像   |
|------------|-------------|-----------|
| CModel     | m_Model;    | // 定位模板   |
| CPrImage   | m_ModImage; | // 模板图像   |
| CFindModel | m_Find;     | // 形状模型搜索 |
| CGdiRect   | m_lRoi;     | // 学习ROI  |
| CGdiRect   | m sRoi;     | // 搜索ROI  |



深圳市创科自动化控制技术有限公司

| COverlay   | m_Overlay;   | // 图像显示表面, 前显示的动态图形,主要用于ROI 显示。 |   |
|------------|--------------|---------------------------------|---|
| COverlay   | m_Results;   | // 图像显示表面, 前显示的静态图形,主要用于检测结果生   | 成 |
| 图形显示。      |              |                                 |   |
| CGdiView   | m_GdiView;   | // 图形显示视图窗口                     |   |
| CModelD1g  | m_ModelDlg;  | // 编辑定位模板                       |   |
| CModVarD1g | m_ModVarDlg; | // 角度、比例设置                      |   |

# 在对话框窗口的.cpp 实现文件中添加相应的功能实现。

#### // 执行搜索

voidCModelDemoDlg::OnExecute()

{

// TODO: Add your control notification handler code here  $\mbox{m_lRoi.SetVisible(false});$ 

// 删除所有图形,请注意在线程中调用清除图形时,最好使用发送消息的方式, // 可参考ContourDemo 中的CContourDemoDlg::OnExecute() 。

Overlay\_DeleteAll(m\_Results);

#### // 设置搜索参数

m\_Find.SetMaxCount(GetDlgItemInt(IDC\_EDIT1)); m\_Find.SetMinScore(GetDlgItemInt(IDC\_EDIT2)); m\_Find.SetThreshold(GetDlgItemInt(IDC\_EDIT3)); m\_Find.SetPolarity(m\_Combol.GetCurSel()); m\_Find.SetCompressor(m\_Combo2.GetCurSel()); m\_Find.SetModResult(m\_Check1.GetCheck());

BeginTime();

```
if(m_sRoi.GetVisible())
{
    m_Find.Execute(m_Image, m_Model, m_sRoi); // 执行搜索功能
}
else
{
    m_Find.Execute(m_Image, m_Model, MaxROI);
}
```

EndTime();



```
CStringtext;
FindResult* data=NULL;
m_List1.DeleteAllItems();
for( inti=0; i<m_Find.GetResultCount(); i++ )</pre>
{
     data = m_Find.GetResultData(i);// 获取匹配结果数据
     text.Format( _T("%d"), i+1 );
     m_List1.InsertItem( i, text );
     text.Format( _T(\%0.3f''), data->Score );
     m_List1.SetItemText( i, 1, text );
     text.Format( _T("%0.3f"), data->Center.x );
     m_List1.SetItemText( i, 2, text );
     text.Format( _T("%0.3f"), data->Center.y );
     m_List1.SetItemText( i, 3, text );
     text.Format( _T("\%0.3f"), data->Angle );
     m List1.SetItemText( i, 4, text );
     text.Format( _T("\%0.3f"), data->Scale );
     m_List1.SetItemText( i, 5, text );
     if( data->Model.count>0 ) {
         CGdiContour* p1 = new
              CGdiContour(data->Model);
         if( p1!=NULL ) {
              p1->0ffset(0.5,0.5);
              p1->SetPenWidth( 1 );
              p1->SetPenColor( RGB(0,255,0) );
              m_Results. AddItem(p1);// 添加模板轮廓显示
     }
     CGdiRotBox* p2 = newCGdiRotBox(
         data->Center.x,
         data->Center.y,
```



```
data->Width,
         data->Height,
         data->Angle );
    if( p2!=NULL ) {
         p2->0ffset(0.5,0.5);
         p2->SetPenColor( RGB(0,255,0) );
         m Results. AddItem(p2);// 添加旋转矩形ROI显示
    }
    CGdiPoint* p3 = new
         CGdiPoint(data->Position);
    if (p3!=NULL) {
         p3->0ffset(0.5,0.5);
         p3->SetSize(10);
         p3->SetStyle( 2 );
         p3->SetPenColor( RGB(0,255,0) );
         m_Results.AddItem(p3);// 添加旋转矩形ROI显示
    }
}
m GdiView. Redraw();// 刷新显示
```

}

//.....详情请打开实例参考。

MultiModelDemo 多轮廓匹配定位(新版本)

在 StdAfx.h 的头文件中添加 CKVISION 相关定义

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

在对话框窗口的.cpp 实现文件中添加相应的功能实现。



# //.....详情请打开实例参考。

# NCMatchDemo 灰度匹配定位

在 StdAfx.h 的头文件中添加 CKVISION 相关定义 #include"..\\..\\Include\\CKGDI.h" #include"..\\..\\Include\\CKBase.h" #include"..\\..\\Include\\CKLocate.h"

# #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKLocate.lib")
#else
#pragmacomment(lib, "..\\..\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\Lib\\CKLocate.lib")
#pragmacomment(lib, "..\\..\Lib\\CKLocate.lib")
```

usingnamespaceCKVision;

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库
//...
//...End
CKVision::ExitLibrary(); // 退出 CKVision 库
```

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

| CNCPat   | m_Pat;   | // 匹配模板       |
|----------|----------|---------------|
| CNCMatch | m_Match; | // 基于灰度区域匹配功能 |
| CPrImage | m_Image; | // 基础图像       |
| CGdiRect | m_lRect; | // 学习ROI      |



深圳市创科自动化控制技术有限公司

|    | CGdiRect    | m_sRect; / | // 摂 | 索  | ROI     |                      |
|----|-------------|------------|------|----|---------|----------------------|
|    | COverlay    | m_Overlay; |      | // | 图像显示表面, | 前显示的动态图形,主要用于ROI 显示。 |
|    | COverlay    | m_Results; |      | // | 图像显示表面, | 前显示的静态图形,主要用于检测结果生成  |
| 图形 | 显示。         |            |      |    |         |                      |
|    | CGdiView    | m_GdiView; |      | // | 图形显示视图窗 | ÎП                   |
|    | CPatternDlg | m_PatternD | lg;  | // | 编辑模板窗口  |                      |

# 在对话框窗口的.cpp 实现文件中添加相应的功能实现。

```
// 执行匹配
voidCNCMatchDemoDlg::OnSearch()
{
    // TODO: Add your control notification handler code here
    m_lRect.SetVisible( false );
                                   // 隐藏学习ROI
    // 设置匹配参数
    m_Match.SetMaxCount(GetDlgItemInt(IDC_EDIT1));
    m_Match.SetMinScore(GetDlgItemInt(IDC_EDIT2));
    m Match.SetSubPixel( m subPixel.GetCheck() );
    BeginTime();
    if( m_sRect.GetVisible() )
         m Match. Execute(m Image, m Pat, m sRect); //执行匹配功能
    else
         m_Match.Execute( m_Image, m_Pat, MaxROI );
    EndTime();
    intitem;
    CStringtext;
    constMatchData* data;
    m_List1. DeleteAllItems();
    for( intn=0; n<m_Results.GetCount(); n++ )</pre>
         deletem_Results[n];
    m_Results.RemoveAll();
    for( inti=0; i<m_Match.GetMatchCount(); i++ ) {</pre>
         data = m_Match.GetMatchData( i );
    // 添加数据到列表
         text.Format( "%d", i+1 );
         item = m_List1.InsertItem( i, text );
         text.Format( "%0.2f", data->Score );
```

m\_List1.SetItemText( item, 1, text );



```
text.Format( "%0.2f", data->Position.x );
     m List1.SetItemText( item, 2, text );
     text.Format( "%0.2f", data->Position.y );
     m_List1.SetItemText( item, 3, text );
// 添加中心点
    CGdiPoint* p1 = new
         CGdiPoint(data->Position);
    if( p1!=NULL ) {
         p1 \rightarrow SetPenColor(RGB(0, 255, 0));
         p1->SetSize( 8 );
         p1->SetStyle( 2 );
         m Results.AddItem( p1 );
    }
// 添加矩形框
    CGdiRect* p2 = newCGdiRect;
     if (p2!=NULL) {
         p2->left = data->Center.x-data->Width/2+0.5;
         p2->top
                      = data->Center.y-data->Height/2+0.5;
         p2->right = data->Center.x+data->Width/2+0.5;
         p2->bottom = data->Center.y+data->Height/2+0.5;
         p2->SetPenColor( RGB(0, 255, 0) );
         m_Results.AddItem( p2 );
    }
// 添加标号
    CGdiText* p3 = newCGdiText;
     if( p3!=NULL ) {
         text.Format( "%d", i+1 );
         p3->SetText( text );
         p3->SetFontSize( 15 );
         p3->SetPenColor( RGB(0,255,0) );
         p3->SetPosition( p2->left+0.5, p2->top+0.5 );
         p3->SetSpace( 0, -15 );
         m_Results.AddItem( p3 );
    }
}
m_GdiView.Redraw();// 刷新显示
```

```
//.....详情请打开实例参考。
```

}



# QRCodeDemo 二维码检测(QR 码)

# 在 StdAfx.h 的头文件中添加 CKVISION 相关定义

#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKReadQRCode.h"

# #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\Lib_x64\\CKReader.lib")
#pragmacomment(lib, "..\\..\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\Lib\\CKReader.lib")
#pragmacomment(lib, "..\\..\Lib\\CKReader.lib")
#pragmacomment(lib, "..\\..\Lib\\CKReader.lib")
```

usingnamespaceCKVision;

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库
//...
```

CKVision::ExitLibrary(); // 退出 CKVision 库

在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

```
在对话框窗口的 .h 头文件中定义相应的图像处理功能:
   CPrImage
             m_Image;
                      // 基础图像
                          // 搜索ROI
   CGdiRect
             m_Rect;
   COverlay
             m_Overlay;
                          // 图像显示表面, 前显示的动态图形, 主要用于ROI 显示。
                          // 图像显示表面, 前显示的静态图形, 主要用于检测结果生成
   COverlay
             m_Results;
图形显示。
   CGdiView
                          // 图形显示视图窗口
             m_GdiView;
   CReadQRCode
                m_QRCode;
                          // 二维码 QRCode 读取
```

www.ckvision.net



{

```
在对话框窗口的.cpp 实现文件中添加相应的功能实现。
// 执行
voidCQRCodeDemoDlg::OnBnClickedExecute()
   // TODO: 在此添加控件通知处理程序代码
   // 删除所有图形,请注意在线程中调用清除图形时,最好使用发送消息的方式,
    // 可参考ContourDemo 中的CContourDemoDlg::OnExecute() 。
   Overlay_DeleteAll(m_Results);
   BOOLisCheck1 = m_Check1.GetCheck();
    if(isCheck1) {
        AutoThreshold();
    }
    intnMaxCount = GetDlgItemInt(IDC_EDIT1);
    intnPos = m Slider1.GetPos();
    // 设置读取参数
    m_QRCode.SetMaxCount(nMaxCount);
    m_QRCode.SetThreshold(nPos);
    m_QRCode.SetPolarity(m_Combol.GetCurSel());
    m_QRCode.SetMinArea(GetDlgItemInt(IDC_EDIT2));
    m_QRCode.SetMaxArea(GetDlgItemInt(IDC_EDIT3));
   BeginTime();
    if (m_Rect.GetVisible()) {
        m_QRCode.Execute(m_Image, m_Rect); // // 执行读取二维码功能
    } else {
        m_QRCode.Execute(m_Image, MaxROI);
    }
    EndTime();
    m_List1.DeleteAllItems();
    for (inti=0; i<m_QRCode.GetResultCount(); i++)</pre>
    {
```



```
// 获取二维码数据
QRCodeResult* pResult = m_QRCode.GetResultItem(i);
if (pResult)
{
    intnItem = m_List1. InsertItem(i, _T(""));
    CStringstr;
    str.Format( _T("%d"), i);
    m_List1.SetItemText(nItem, 0, str);
    DPNTctPos;
    Center2P( pResult->border[0], pResult->border[2], ctPos );
    doubledAngle = 0;
    dAngle = Angle2P( pResult->border[0], pResult->border[1] );
    str.Format( _T("%0.3f"), ctPos.x);
    m_List1.SetItemText(nItem, 1, str);
    str.Format( _T("%0.3f"), ctPos.y);
    m_List1.SetItemText(nItem, 2, str);
    str.Format( _T("%0.3f"), dAngle);
    m_List1.SetItemText(nItem, 3, str);
    m_List1.SetItemText(nItem, 4, CString(pResult->codeText));
    // 多边形图形
    CGdiPolygon* p1 = newCGdiPolygon;
    if( p1!=NULL )
    {
         p1 \rightarrow SetMax(4);
         p1->Add(pResult->border[0]);
         p1->Add(pResult->border[1]);
         p1->Add(pResult->border[2]);
         p1->Add(pResult->border[3]);
         if( pResult->codeLen>0 )
         {
              p1->SetPenColor(RGB(0,255,0));
         }
         else
         {
              p1->SetPenColor(RGB(255,0,0));
         }
```

www.ckvision.net



```
p1->SetPenWidth(2);
                  m_Results.AddItem(p1); // 添加到显示
              }
              CGdiPoint* p2 = newCGdiPoint(ctPos);
              if (p2!=NULL)
              {
                  p2 \rightarrow SetSize(21);
                  p2->SetStyle(0);
                  p2->SetPenWidth(1);
                  p2->SetPenColor(RGB(0,255,0));
                  m_Results.AddItem(p2); // 添加到显示
              }
              for (intn=0; n<4; n++)</pre>
              {
                  CStringstr;
                  str.Format( _T("%d (%0.2f,%0.2f)"), n, pResult->border[n].x,
pResult->border[n].y);
                  CGdiText* pText = newCGdiText(CStringA(str));
                   if (pText!=NULL)
                   {
                       pText->SetPosition(pResult->border[n].x, pResult->border[n].y);
                       pText->SetPenColor(RGB(0, 0, 255));
                       m_Results.AddItem(pText);// 添加到显示
                  }
              }
         }
    }
    m_GdiView.Redraw(); // 刷新显示
}
```

```
//.....详情请打开实例参考。
```

# ReadOcrDemo 字符读取

```
在 StdAfx.h 的头文件中添加 CKVISION 相关定义
#include<sup>"</sup>...\\..\\Include\\CKGDI.h<sup>"</sup>
```



```
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKReader.h"
```

#### #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
#pragma comment(lib, "..\\..\\Lib_x64\\CKReader.lib")
#else
#pragmacomment(lib, "..\\..\\Lib\\CKGDI.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKBase.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKReader.lib")
#pragmacomment(lib, "..\\..\\Lib\\CKReader.lib")
```

usingnamespaceCKVision;

# 在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库
//...
```

```
CKVision::ExitLibrary(); // 退出 CKVision 库
```

# 在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的 .h 头文件中定义相应的图像处理功能:

```
CPrImage
              m_Image;
                             // 基础图像
   CGdiRect
              m_Rect;
                             // 范围ROI
   COverlay
              m_Overlay;
                             // 图像显示表面, 前显示的动态图形, 主要用于ROI 显示。
   COverlay
              m_Results;
                             // 图像显示表面, 前显示的静态图形, 主要用于检测结果生成
图形显示。
   CGdiView
              m_GdiView;
                             // 图形显示视图窗口
   CCharset
              m_Charset;
                             // 字符集功
   CReadOcr
                             // 字符识别
              m_ReadOcr;
   BOOL
                             // 自动二值化
              m_bAutThers;
```



```
CLearnDlg
            m_LearnDlg;
                            // 学习字符窗口
COcrListDlg m OcrListDlg;
                            // 编辑字符集
CThresholdDlg m_ThresholdDlg;
                            // 二值化窗口
```

# 在对话框窗口的.cpp 实现文件中添加相应的功能实现。

#### // 执行字符读取

{

```
voidCReadOcrDemoDlg::OnExecute()
    // TODO: Add your control notification handler code here
    Overlay_DeleteAll(m_Results);
    if(m_bAutThers==TRUE) {// 自动二值化阈值
         CHistogramhist;
         hist.SetAnalyse( Analyse_Threshold ); // 设置参数分析二值化阈值
         hist.Execute( m_Image, m_Rect );
         m_ReadOcr.SetThreshold( hist.GetThreshold() ); // 设置分割阈值
    }
    // 字符识别参数设置
    m_ReadOcr.SetPolarity( m_Combol.GetCurSel() );
    m_ReadOcr.SetNoiseArea(GetDlgItemInt(IDC_EDIT2));
    m ReadOcr.SetMinWidth(GetDlgItemInt(IDC EDIT3));
    m_ReadOcr.SetMaxWidth(GetDlgItemInt(IDC_EDIT4));
    m_ReadOcr.SetMinHeight( GetDlgItemInt(IDC_EDIT5) );
    m_ReadOcr.SetMaxHeight( GetDlgItemInt(IDC_EDIT6) );
    m_ReadOcr.SetMinScore(GetDlgItemInt(IDC_EDIT7));
    m_ReadOcr.SetUniteSpaceX(GetDlgItemInt(IDC_EDIT9));
    m_ReadOcr.SetUniteSpaceY(GetDlgItemInt(IDC_EDIT10));
    m_ReadOcr.SetUniteEnabled( m_Check1.GetCheck() );
    m_ReadOcr.Execute( m_Image, m_Charset, m_Rect );// 执行字符识别
    m_List1. DeleteAllItems();
    OcrResult* data;
    CString str, text;
    for( inti=0; i<m_ReadOcr.GetResultCount(); i++ ) {</pre>
```



```
data = m_ReadOcr.GetResultData(i); // 返回单个字符数据
    str = data->Text;
    m_List1.InsertItem( i, str );
    text += str;
    str.Format( _T("%0.0f"), data->Score );
    m_List1.SetItemText( i, 1, str );
    str.Format( _T("%d"), RECT_WIDTH(data->Rect) );
    m_List1.SetItemText( i, 2, str );
    str.Format( _T("%d"), RECT_HEIGHT(data->Rect) );
    m_List1.SetItemText( i, 3, str );
    CGdiRect* p1 = new
         CGdiRect( data->Rect ); //矩形框
    if( p1!=NULL ) {
         p1->SetPenColor(RGB(0,255,0));
         m_Results.AddItem(p1); // 添加到显示
    }
}
SetDlgItemText( IDC_EDIT8, text );
m_GdiView.Redraw(); // 刷新显示
```

//.....详情请打开实例参考。

}

SearchDemo 模板轮廓匹配定位(新版本)

在 StdAfx.h 的头文件中添加 CKVISION 相关定义

```
#include"..\\..\\Include\\CKGDI.h"
#include"..\\..\\Include\\CKBase.h"
#include"..\\..\\Include\\CKLocate.h"
```



#### #ifdef\_WIN64

```
#pragma comment(lib, "..\\..\\Lib_x64\\CKBase.lib")
    #pragma comment(lib, "..\\..\\Lib_x64\\CKGDI.lib")
    #pragma comment(lib, "..\\..\\Lib_x64\\CKLocate.lib")
#else
    #pragmacomment(lib, "...\\Lib\\CKBase.lib")
    #pragmacomment(lib, "...\\Lib\\CKGDI.lib")
    #pragmacomment(lib, "...\\Lib\\CKLocate.lib")
#endif
```

```
usingnamespaceCKVision;
```

在应用程序入口和退出的地方增加初始化和释放 CKVISION 库。

```
CKVision::InitLibrary(); // 初始化 CKVision 库
//...End
```

```
CKVision::ExitLibrary(); // 退出 CKVision 库
```

# 在资源视图 Dialog 中添加相应的界面操作 //.....详情请打开实例参考。

在对话框窗口的.h 头文件中定义相应的图像处理功能:

|    | CPrImage    | m_Image;   | // 基础图像                         |
|----|-------------|------------|---------------------------------|
|    | CMask       | m_Mask;    | // 图像掩摸                         |
|    | CPrImage    | m_Pat;     | // 模板图像                         |
|    | CShapeMode1 | m_Model;   | // 形状模板                         |
|    | CShapeMatch | m_Match;   | // 基于边缘轮廓特征的形状匹配                |
|    | IRECT       | m_lRect;   | // 学习区域记录                       |
|    |             |            |                                 |
|    | CGdiRect    | m_lRoi;    | // 学习ROI                        |
|    | CGdiRect    | m_sRoi;    | // 搜索范围ROI                      |
|    | COverlay    | m_Overlay; | // 图像显示表面, 前显示的动态图形,主要用于ROI 显示。 |
|    | COverlay    | m_Results; | // 图像显示表面, 前显示的静态图形,主要用于检测结果生成  |
| 图形 | 显示。         |            |                                 |
|    | CGdiView    | m_GdiView; | // 图形显示视图窗口                     |



{

在对话框窗口的.cpp 实现文件中添加相应的功能实现。

```
// 执行匹配
voidCSearchDemoDlg::OnSearch()
    // TODO: Add your control notification handler code here
    UpdateData(TRUE);
    m_nSe1 = -1;
    // 设置搜索参数
    m_Match.SetMaxCount(GetDlgItemInt(IDC_EDIT1));
    m_Match.SetMinScore(GetDlgItemInt(IDC_EDIT2));
    m_Match.SetMinAngle(GetDlgItemInt(IDC_EDIT3));
    m_Match.SetMaxAngle(GetDlgItemInt(IDC_EDIT4));
    m_Match.SetMinScale(GetDlgItemInt(IDC_EDIT5));
    m_Match.SetMaxScale(GetDlgItemInt(IDC_EDIT6));
    m_Match.SetMaxOverlap(GetDlgItemInt(IDC_EDIT7));
    m_Match.SetMaxSpeed( m_Slider1.GetPos() );
    m Match.SetAccuracy( m Slider2.GetPos() );
    m_Match.SetPolarity( m_Combol.GetCurSel() );
    CStringtext;
    CModelContourtempl;
    m_List1. DeleteAllItems();
    // 删除所有图形,请注意在线程中调用清除图形时,最好使用发送消息的方式,
    // 可参考ContourDemo 中的CContourDemoDlg::OnExecute() 。
    Overlay_DeleteAll(m_Results);
    BeginTime();
    if( m_sRoi.GetVisible() )
    {
        m_Match.Execute(m_Image, m_Model, m_sRoi); // 执行搜索功能
    }
    else
    {
        m_Match.Execute( m_Image, m_Model, MaxROI );
    }
```



```
EndTime();
SMatchData* data;
for( inti=0; i<m_Match.GetNumMatchs(); i++ )</pre>
{
    data=m_Match.GetMatchData(i); // 获取匹配数据
    text.Format( "%d", i+1 );
    m_List1.InsertItem( i, text );
    text.Format( "%0.3f", data->score );
    m List1.SetItemText( i, 1, text );
    text.Format( "%0.3f", data->center.x );
    m_List1.SetItemText( i, 2, text );
    text.Format( "%0.3f", data->center.y );
    m_List1.SetItemText( i, 3, text );
    text.Format( "%0.3f", data->angle );
    m_List1.SetItemText( i, 4, text );
    text.Format( "%0.3f", data->scale );
    m_List1.SetItemText( i, 5, text );
/* CGdiRotBox* p1 = new CGdiRotBox(
              data->center.x,
              data->center.y,
              data->width,
              data->height,
              data->angle );
    if( p1!=NULL )
     {
         p1->0ffset(0.5,0.5);
         p1->SetPenColor( RGB(0,255,0) );
         m_Results.AddItem(p1); // 把旋转矩形添加到显示
    }*/
    CGdiContour* p2 = newCGdiContour(data->model);
    if( p2!=NULL )
     {
```



```
p2=>Offset(0.5,0.5);
p2=>SetPenWidth(1);
p2=>SetPenColor(RGB(0,255,0));
m_Results.AddItem(p2); // 把模板轮廓添加到显示
}
CGdiPoint* p3 = newCGdiPoint(data->frame.point);
if (p3 != NULL)
{
    p3=>SetSize(30);
    p3=>SetPenWidth(1);
    p3=>SetPenWidth(1);
    m_Results.AddItem(p3);// 把匹配点添加到显示
}
m_GdiView.Redraw(); // 刷新显示
```

# }

//.....详情请打开实例参考。



# 9 附 1.CKVISION API 功能分类

| 其砷定        |                 |          |  |
|------------|-----------------|----------|--|
| 查·仙/牛      |                 |          |  |
|            | CKImage.h       | 图像       |  |
|            | CKMask.h        | 图像掩膜     |  |
|            | /* 图像处理 */      |          |  |
|            | CKImgOpera.h    | 算术和逻辑    |  |
|            | CKImgFilter.h   | 滤波处理     |  |
| CKBase.dll | CKImgMorph.h    | 形态学      |  |
| CKBase.lib | CKImgTrans.h    | 几何变换     |  |
| CKBase.h   | CKImgConve.h    | 转换功能     |  |
|            | /* 检测功能 */      |          |  |
|            | CKHistogram.h   | 直方图和灰度分析 |  |
|            | CKPixelStat.h   | 像素统计     |  |
|            | CKSharpAssess.h | 清晰度评测    |  |
|            | /* 其它功能 */      |          |  |
|            | CKGeoMeas.h     | 几何测量     |  |
|            | CKFrameTrans.h  | 坐标系变换    |  |
|            |                 |          |  |

| 斑占公垢            |                  |              |  |
|-----------------|------------------|--------------|--|
| <u><u></u> </u> |                  |              |  |
|                 | CKPatInspect.h   |              |  |
|                 | 模板对比             |              |  |
|                 |                  |              |  |
|                 | CKBlobAnalyzer.h | CKMask.h     |  |
| CKBlob.dll      | Blob 分析          | 图形掩摸         |  |
| CKBlob.lib      |                  |              |  |
| CKBlob.h        |                  | CKBlobDef.h  |  |
|                 |                  | Blob 定义      |  |
|                 |                  |              |  |
|                 |                  | CKBlobData.h |  |
|                 |                  | Blob 数据      |  |

www.ckvision.net



| 标完与校准             |                 |  |
|-------------------|-----------------|--|
| 小足马伐臣             |                 |  |
|                   | CKDotMatrix.h   |  |
| CKCalibration.dll | 圆形矩阵标定板         |  |
| CKCalibration.lib |                 |  |
| CKCalibration.h   |                 |  |
|                   | CKCalibration.h |  |
|                   | 标定功能            |  |

| 新布识别        |                   |      |  |
|-------------|-------------------|------|--|
|             |                   |      |  |
|             | CKColorMonitor.h  | 颜色监测 |  |
| CKColor.dll |                   |      |  |
| CKColor.lib | CKColorIdentify.h | 颜色识别 |  |
| CKColor.h   |                   |      |  |
|             | CKHSIThreshold.h  | 颜色抽取 |  |

| 因形見子      |                 |           |  |
|-----------|-----------------|-----------|--|
| 国心亚小      |                 |           |  |
|           | CKGdiView.h     | 图形视图窗口功能  |  |
|           | CKGdiType.h     | GDI 模板类   |  |
|           | CKGdiText.h     | 文本显示功能    |  |
|           | CKGdiPoint.h    | GDI 点显示类  |  |
|           | CKGdiFrame.h    | 坐标系显示     |  |
|           | CKGdiLine.h     | 线段图形功能    |  |
|           | CKGdiRect.h     | 矩形框功能     |  |
|           | CKGdiRotBox.h   | 旋转矩形功能    |  |
| CKGDI.dll | CKGdiBoxScan.h  | 旋转矩形框内扫描线 |  |
| CKGDI.1ib | CKGdiCircle.h   | 圆形功能      |  |
| CKGDI.h   | CKGdiRing.h     | 圆环图形      |  |
|           | CKGdiRingScan.h | 圆环内扫描线    |  |
|           | CKGdiEllipse.h  | 椭圆图形      |  |

www.ckvision.net



| CKGdiContour.h   | 轮廓图形显示     |  |
|------------------|------------|--|
| CKGdiPolygon.h   | 多边形图形      |  |
| CKGdiProfile.h   | 投影曲线边缘位置显示 |  |
| CKGdiHistogram.h | 直方图图形      |  |
| CKGdiMask.h      | 掩摸显示       |  |
| CKGdiModel.h     | 模型轮廓显示     |  |
|                  |            |  |

| 形状匹配         |                  |       |  |
|--------------|------------------|-------|--|
|              |                  |       |  |
|              | CKNCMatch.h      | 灰度匹配  |  |
| CKLocate.dll |                  |       |  |
| CKLocate.lib | CKFindModel.h    | 形状匹配  |  |
| CKLocate.h   |                  |       |  |
|              | CKShapeMatch.h   | 新形状匹配 |  |
|              |                  |       |  |
|              | CKModelContour.h | 模型轮廓  |  |
|              |                  |       |  |

| 测量 (点、线、圆)    |               |        |  |
|---------------|---------------|--------|--|
|               | CKEdgeTool.h  | 边缘点检测  |  |
|               | CKCaliper.h   | 卡尺工具   |  |
| CKMeasure.dll | CKAcmeTool.h  | 顶点测量工具 |  |
| CKMeasure.lib | CKFitCircle.h | 圆拟合工具  |  |
| CKMeasure.h   | CKFitLine.h   | 线拟合工具  |  |
|               | CKScanEdge.h  | 扫描边缘工具 |  |
|               | CKScanSpace.h | 扫描间距工具 |  |



| 条码识别(一维码、    |                 |                 |  |
|--------------|-----------------|-----------------|--|
| 二维码)         |                 |                 |  |
| CKReader.dll | CKBarcode.h     | 条码读取            |  |
| CKReader.lib |                 |                 |  |
| CKReader.h   | CKReadOcr.h     | 读取字符            |  |
|              |                 |                 |  |
|              | CKFindBarcode.h | 条码定位            |  |
|              |                 |                 |  |
|              | CKDataMatrix.h  | DataMatrix二维码读取 |  |
|              |                 |                 |  |
|              | CKReadQRCode.h  | QRCode 二维码读取    |  |
|              |                 |                 |  |